
Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 4, 9126 – 9132

Storage System for Software Quality Metrics Associated with

UML Diagrams

1Jairo A. Cortes M., 2Luis Carlos Gutiérrez, 3Jaime Alberto Paez Paez, 4Fredys A.

Simanca H., 5Fabian Blanco Garrido

1Universidad Cooperativa de Colombia, jairo.cortes@campusucc.edu.co
2Universidad Cooperativa de Colombia, lgutier91320@universidadean.edu.co
3Universidad Cooperativa de Colombia, jaime.paez@campusucc.edu.co
4Universidad Cooperativa de Colombia, fredys.simanca@campusucc.edu.co
5Universidad Cooperativa de Colombia, fabian.blanco@campusucc.edu.co

Abstract

The project derived from the research "Software quality metrics system based on Unified Modeling

Language - UML diagrams", which is being developed at the Universidad Cooperativa de Colombia,

recommends the development of software quality metrics based on UML diagrams to identify early

errors in its concept. The final objective is to support these indicators with tools that allow the work of

software designers and developers and that they can evaluate the relationship that the diagram and its

quality must have with the requirements. This research shows the results of a storage system for

software quality metrics based on UML (Unified Modeling Language) diagrams. Information on

software quality metrics was obtained mainly on the aforementioned diagrams represented in

metamodels with XMI (XML (eXtensible Markup Language) Interchange) formats to facilitate the

exchange of metadata between modeling tools based on UML.

Keywords: Metrics, UML, Repository, XMI; Software.

INTRODUCTION

In order to consider a UML (Unified Modeling

Language) diagram well elaborated, it must be

considered to have implemented correct quality

standards and to guarantee these standards,

certain quality models or metrics must be

followed. This allows considering an efficient

software in relation to its results, by means of

the study of its attributes. Likewise, there are

certain tools to determine the quality, which are

focused on generating matrices and comparison

diagrams to perform the analysis on these and

determine if there are failures in the

development. With this in mind, a research will

be conducted, focusing on reengineering the

rules, codes and guidelines based on UML

diagrams, whether they are made by hand or

generated by an application. In addition, the

study will be focused on the OMG standards on

UML integrated to XML-XMI to make a

description of these models in OCL (Object

Constraint Language) (OMG, 2011) and thus

provide a research that expands the

measurement base of these diagrams and can

use a tool to predict the error in its early

development.

This research focuses on the study of metrics

and quality standards of UML diagrams, since

having a guide on how to qualify the criteria of

a software, it is easier to achieve a more

efficient development area. By taking into

account that the developments are

homogeneous and comparable, it is easier to

have an optimization of resources and cost

estimates than not achieving the fulfillment of

the requirements. The adjustment of the

9127 Journal of Positive School Psychology

development due to accumulated errors and not

having an adequate development guide, implies

a greater effort in the conception and

implementation of systems. One of the

fundamental aspects of software engineering is

to generate high quality products, but multiple

problems may occur when developing a

product that may be associated with not

understanding the requirements well,

oversizing what is wanted to be done, not

understanding the system and other factors

(The Standish Group International, 2015).

Some of these drawbacks could become the

way in which functionality, usability, safety,

security, efficiency and performance can be

measured among other factors before

development. The adjustment of the

development due to accumulated errors and not

having an adequate development guide implies

a greater effort in the conception and

implementation of systems. One of the main

objectives of this research is to design and

develop a quality metrics storage system of the

software based on UML diagrams.

Software Quality Metrics

OCL is known as a standard which is defined

by OMG (Murchio, 2014), it is a standard

language that allows describing expressions

about a UML model or diagram (OMG, 2011).

When talking about OCL it refers to a language

with pure specification, and, therefore, it will

be confirmed that the evaluation of an OCL

expression does not have side effects or imply

any consequence; when a OCL expression is

evaluated, it will simply return a value and

nothing is modified in the model; the

evaluation of an OCL expression is

instantaneous (OMG, 2011).

UML rules are both syntactic and semantic and

can be described as follows:

• Names: Indicates names of elements,

diagrams and relationships.

• Scope: Determines what each name

means.

• Visibility: It is how these names can be

visualized and made useful by others.

• Integrity: information about the way

some elements are going to be related to others.

• Execution: It is the meaning of

simulating or executing any dynamic model.

The models that are built during the

development of a system can be abbreviated,

incomplete or inconsistent (OMG, 2009).

Common mechanisms in UML, are applied in a

consistent way by means of the language, such

ways are classified into:

• Specifications.

• Adornments.

• Common divisions.

Software quality metrics have evolved through

process, product and resource standards. There

are traditional metrics such as Cyclomatic

Complexity, McCabe and McCall metrics,

there are also object-oriented metrics such as

MOOSE, MOOD and those of Loren and Kidd,

defined at the design level and there are others

such as metrics for UML diagrams that are

defined more at the conceptual level (Piattini et

al, 2008, pp 68-119).

To describe some of these for example the

MOOSE Metrics or known by CK Chidamber

and Kemerer are class oriented metrics, they

measure individual classes, inheritance and

collaborations, it is one of the most referenced

set of metrics.

Lorenz and Kidd metrics are class-oriented and

measure size, values, inheritance, externals and

internals. The UML or conceptual diagram

metrics are divided according to the diagram,

among the most used are the class diagram,

cases of use and transition and states (Piattini et

al, 2008, pp 68-119).

Materials and Methods

The methodology used is SCRUM, which aims

to deliver values in very short periods of time

and for this it is necessary to take into account

Jairo A. Cortes M. 9128

three fundamental pillars which are

transparency, inspection and finally adaptation,

this makes the project deliverables totally

reliable and thus reviewing constantly the

process or the development of the project

(Sutherland, 2013). The SCRUM methodology

is based on flexibility, on the adoption of

modifications and the addition of new

requirements, in the execution of a complex

project; it is also based on the interaction with

the client, the human factor and the iterative

development with the intention of having good

results (Sutherland, 2013). In the initial

planning stages, the requirements were

organized in the blacklog product as research

was conducted on each of the UML diagrams

(Booch et al, 2006) and the way in which

metrics are associated to guarantee the

accuracy of the requirements. Sprint is

generated for the development of each of the

diagrams and their associated metrics, and then

sprint is generated for the storage process of the

metrics and their validation with the

requirements. For the organization and

development of the project there were two main

phases, the first one related to the collection of

specific information on the UML diagrams and

their associated metrics and the second phase,

with the elaboration of the repository with its

validation and verification process.

Results and Discussion

An identification of each of the UML diagrams

is made according to the standard found in

version 2.5, see figure 1.

Figure 1. UML 2.5 Diagrams

Today, UML modeling is found in UML

version 2.5.1 (OMG, 2009), in which there can

be two classifications of diagrams such as

structural diagrams and behavioral diagrams.

Structure Diagrams

A structure diagram represents the internal

architecture of a system at different levels of

abstraction, with a special focus on the classes,

the connections and/or interactions that they

have, its general objective is to represent in a

modular graphical way the components that a

system has, leaving the input and output

parameters defined.

The rules that are applied to the structure

diagrams are not applied to follow some kind

of standard but rather to reduce the complexity

in case some modification arises where it is

necessary to modify some structure. Some of

the rules for structure diagrams are:

• When setting up a module, do not

detail the internal logic of the module, only the

inputs and outputs.

9129 Journal of Positive School Psychology

• Modules must be small with a concise

action name.

• Modules must be independent of each

other

• Modules have to perform a clear and

simple function.

• There must be a data store to represent

the system values

• Modules can be decomposed into other

sub-modules to make the system easier to

understand and modify

• There should be hierarchy between

modules so that higher levels can more easily

handle information from lower levels

• There must be a clear design strategy

on which the information will be worked in

order to choose the appropriate diagram.

One of the diagrams associated with this

classification is the component diagram, which

details the static design view of the components

in a system, in addition to showing the

organization and their respective dependencies

between them. Some of the rules for object

diagrams are:

• There is no need to confuse the object

diagram with the class diagram, since the class

diagram has operations.

• There is no need to add multiplicity

between objects.

• Attributes must have assigned values

within the software.

• A UML object diagram represents a

specific instance of a class diagram at any

given point in time.

An UML object diagram represents a specific

single instance of a class diagram at any given

time.

Behavioral Diagrams

A behavioral diagram is defined as a diagram

that represents the sequence of states that an

object undergoes in response to events

throughout its life cycle. In other words, these

diagrams show the different states of the

process. Through these charts, the process to be

programmed is shown graphically.

These charts are used to show, standardize and

record the dynamics of the system. When we

talk about software development, these

dynamic aspects can be generated messages,

data input operations, events, etc. These

diagrams can be very simple or very complex,

depending on the process they represent. They

refer to objects because they are widely used in

object-oriented programming. An object can be

any entity with a specific state and behavior.

Some of the rules for use case diagrams are:

• Use cases must describe what the

system to be developed should do when

interacting with participants, not how it should

do it. In other words, it must only describe

externally observable behavior without going

into the internal functions of the system.

• The name of the use case should

describe what the participant intends to achieve

by executing it.

• The use case should describe the

interaction with the participants without

explicitly referring to the specific user interface

elements of the system to be developed.

• Calling certain use cases from other

use cases should only be used as a mechanism

to avoid repeating a certain sequence of steps

that are repeated in multiple use cases. Never

use it to express possible user interface menus.

• Try to ensure that all use cases in the

same software requirements specification -

ERS are described to the same level of detail.

• In a use case diagram, you should

avoid crossing the connecting lines between the

participants and the use case.

In Use Case Diagrams, system functions are

symbolized from a user's point of view, which

is called an "actor". For the case of activity

diagrams, it is a special case of a state diagram,

where the state is an action state and most

transactions are sent at the end of the action

performed with the previous state. This type of

Jairo A. Cortes M. 9130

chart allows parallelism of operations to show

the decision paths that exist in the overall

process.

Some of the rules for activity diagrams are:

• "Opaque actions" act as a kind of item

allocators or are known by a specific text

syntax.

• Invoking an action is a step that

directly or indirectly leads to a certain

behavior.

• Object operations modify the state of

the object (and the instance of the class). You

can originate or delete them, relate them to

other instances, read them, and then assign

them to a class.

• The link operation will change the

association (usually the relationship between

the classifiers of the two classes) and their

instances, and the behavior of the link.

• Structural feature actions determine the

behavior of structural features in activity

diagrams. To do this, they need an input pin

because they are usually assigned an

aesthetically specified object and a structural

feature of the classifier.

• Variable operations affect statically

specified variables defined by activities or

structured activity nodes.

• Accept that even actions are

hypothetical support points. This means that the

activity is waiting for an event to occur in the

event group of the context object. Actions have

triggers, which can cause actions when one or

more specified states occur.

In a UML behavior diagram, the control flow

or object flow is shown, with special emphasis

on the sequence and conditions of this flow.

In the research, each of the UML diagrams

were described with their respective associated

metrics (Genero et al, 2000), for example, the

result for the class diagrams identified metrics

such as the number of attributes, methods,

associations, depth and width lengths, number

of objects, the result for the use case diagrams

identified metrics such as the number of actors

and actions, number of interactions, extensions

and includes. Thus, with each of the UML

diagrams their metrics were identified in order

to validate and store them in the repository that

was designed, verifying them with the

requirements of the applications.

According to the previous results, detailing

each one of the diagrams and establishing the

associated rules, it is possible to gather enough

information to create a storage and control

system of quality metrics associated to the

UML diagrams. Likewise, it allows to fulfill

the objectives proposed in the research. The

development of a storage system is structured

according to the architecture represented

(Clements et al, 2012) in Figure 2.

Figure 2. Metrics Storage System Architecture

The description of the architecture is described

in Table 1.

Table 1. Software Architecture description

Process or

flow

Description Result

Registration Process by which the

user about to log in

(either common user

or administrator user),

provides his data to

the application in

order to generate a

correct login to the

application, thus

safeguarding the user's

personal information

in the database.

User´s

accessibility

Verification In the process of

validation by the user,

the information

 Verified

information

9131 Journal of Positive School Psychology

provided by the user

will go through the

administrator in order

to make the correct

validation and

implementation of this

within the system.

CRUD This process is

exclusive to the

administrator, since

he/she is in charge of

ensuring that the

information uploaded

to the application is

accurate and

consistent.

Verified

information

Reading

(Common

user)

This process is simple

since the administrator

verifies the

information that can

be read.

Verified

Information

The variables used in the architecture

(Clements et al, 2010) are detailed in Table 2.

Table 2. Architecture Variables

Input Process Output

Data

(Personal

Information)

Registration User´s

accessibility

UML Rule

(Common

user)

Verification Verified

Information

UML Rule

(administrator

user)

CRUD Verified

Information

Verified

Information

Reading

(Common

user)

Verified

Information

Some of the most representative interfaces,

which are part of the storage system, are the

following:

Figure 3. Software presentation

After entering the system, the user can enter

and validate the metrics associated with each

UML diagram. Then the user will find this

window, in which he/she can enter the system,

or alternatively he/she can register, and to do so

he/she only has to fill in or complete the

following form.

Figure 4. System Access

It should be clarified that this is the view of a

user's registration from the perspective of the

administrator user, since this will be the only

one able to assign the type of user or role that

will be assigned to a new user of the system.

Figure 5. Types of diagrams to be entered and

validated

Once the diagram types section is selected and

we choose the type of diagram we want to

analyze, we can see in first instance the metrics

already entered into the system, also with two

Jairo A. Cortes M. 9132

buttons in which interacting with them is

validated with the requirements and in turn see

a reference image of the diagram stipulated or

otherwise the description of this.

Figure 6. Diagram Examples

Then a description of each diagram with its

rules is made. See figure 7.

Figure 7. Description of each diagram

Conclusions

The design and development of a storage

system for software quality metrics based on

Unified Modeling Language - UML diagrams

was completed.

It was possible to identify each UML diagram

with its rules to register them in the storage

system represented in metamodels with XMI

formats developed by the Object Management

Group - OMG.

A metrics storage system was designed for

software quality using UML diagrams

according to the OMG standard. Students and

teachers developed tests on software usability,

obtaining favorable results. The system allows

to support the metrics indicators, applied in the

tools that are used by software designers and

developers, it also allows to evaluate the

relationship between the diagram and its

standard quality.

Reference

[1] Booch, G., Rumgaugh, J., Jacobson, I.

(2006). El lenguaje unificado de modelado

guía del usuario. Addison Wesley.

[2] Clements, P., Bass, L. (2012). Software

Architecture in Practice. SEI: Series in

Software Engineering.

[3] Clements, P., Bachmann, F.

(2010).Documenting Software

Architectures: Views and Beyond. SEI:

Series in Software Engineering.

[4] Genero, M., Piattini, M. y Calero, C. Early

Measures For UML class diagrams.

L´Objet. 6(4), Hermes Science

Publications, 489-515, 2000

[5] Murchio, S. (2014). Refinando UML:

Object Constraint Language. Recuperado

de: https://folderit.net/es/blog/refinando-

uml-object-constraint-language-es/

[6] OMG (Object Mangement Group) 2009.

OMG Unified Modeling Language (OMG

UML), Superstructure, Version 2.2.

Recuperado de: http://www.omg.org

[7] OMG (Object Mangement Group) 2006.

OMG Diagram Interchange. Recuperado

de: http://www.omg.org

[8] OMG (Object Management Group) 2021.

Lenguaje de Restricción de Objetos.

Recuperado de

https://www.omg.org/spec/OCL/2.3.1/

[9] Piattini, M., García, F., Garzas J., Genero,

M. (2008). Medición y estimación del

software. Técnicas y métodos para mejorar

la calidad y la productividad. Alfaomega-

Ra-Ma. pág. 332.

[10] Standishgroup(2015). Chaos Report 2015.

Recuperado de:

https://www.standishgroup.com/sample_re

search_files/CHAOSReport2015-Final.pdf

[11] Sutherland, J. (2013). Scrum. El Arte de

Hacer el Doble de Trabajo en la Mitad de

Tiempo. Editorial Oceano. Pag. 220.

