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Abstract 

LDs (Lung Diseases) when considered cumulatively, are a major cause of morbidity and mortality. 

Many times, CTSIs (Computed Tomography Scan Images) are obtained by doctors for evaluation of 

LDs and condition of patients including pneumonia, COVID-19, cancer, blood clots or other damages 

caused in the lungs. CTSIs of internal organs, bones, soft tissue, and blood vessels detail about these 

parts to clinicians and specifically their details on soft tissues and blood vessels are of great use. 

Hence, assessments of LDs can be done using CTSIs. These images can also be processed using IPTs 

(Image Processing Techniques) which are non-invasive ways of examinations. The most important 

part of IPTs in CTSIs are FEs (Feature Extractions) which are central to diagnosis or classifications or 

detections of LDs. FEs in the case of LDs from CTSIs narrows down to identification of diseased 

areas precisely where multitude of techniques are used. This paper presents a thorough analysis of the 

existing techniques for FEs with comparative performance charts.  
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1. INTRODUCTION  

LDs have high causality rates where more than 

1.3 million people die LDs throughout the 

world. The projections by American Cancer 

Society on 1.74 million deaths by 2018 [1] was 

also surpassed. Two main reasons contribute 

towards high mortality rates due to LDs: 

Delayed  diagnosis and the poor prognosis [2] 

as more than 70%  When LDs are detected at 

an advanced stage, prognosis is no longer 

helpful. As a result, early detection of LDs is 

critical for improving patient's chances of 

survival. CTSIs provide a greater number of 

pictures, including 3D images that can be 

resized in several planes. They depict interior 

organs, bones, soft tissue, and blood arteries 

which can be examined by physicians on 

computers. Further, quantity of radiations in 

CTSIs can be considerably lowered using 

strategies including modifications in radiation 

dosages. Low dosed chest CTSs generate 

pictures of adequate quality where lung 

illnesses and abnormalities are identified. They 

emit far less radiations than traditional CTSs 

scans. These CTSIs are commonly used to 

assess congenital lung abnormalities including 

pneumonia, interstitial LDs, and tumours. 

However, these procedures need highly trained 

radiologists, an issue for distant and 

impoverished areas. Furthermore, manual 

examinations are prone to human mistake, 

necessitating the use of CADs to aid [2] 

radiologists in diagnosis and lower bogus 

reports. CTSIs can identify anomalies, their 

kind, size, and other characteristics using 

DIPTs (Digital image processing methods). 

Medical image processing is being used more 

and more to create expert assistance systems 

for the diagnosis of a variety of disorders, 

including LDs[3]. A lot of work is being done 

in the field of early LD diagnosis utilizing 
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CAD systems [4]. The nature of the data 

produced in CTSs necessitates the usage of 

automated systems. Lung CTSIs often yield 

more than 250 pictures in a single scan, making 

it difficult, time-consuming, and tiresome to 

examine these large datasets. Furthermore, the 

type of anomalies that determine a patient's fate 

is confounded by the fact that their form and 

size vary from slice to slice. They are 

sometimes connected to other lung structures 

like arteries or bronchioles. It's also possible 

that the hue tat appear in CT scans are 

different. These variables contribute to the 

difficulty of locating abnormalities. However, 

on discovery, the same characteristics aid in 

determining approach’s directions. Accurate 

segmentation of diseased sections from CTSIs 

is a crucial step in detection of LDs where 

several strategies have been presented. Some 

methods need seed pixels in lungs region of 

pictures before using region growing 

approaches to segment the lungs [5]. Lungs 

have been segmented using region-growing 

strategies in studies using CTSIs [6] [7]. The 

center pixel of slices was as used as seeds. 

Method have also segmented the abnormalities  

with the assistance of the radiologists [8]. 

CADs have also been used to divide CTSIs into 

four classes namely lung wall, parenchyma, 

bronchioles, and abnormalities [9] where active 

contours segmented lungs from CTSIs images. 

 

Fig. 1 – Diseased and Normal Human Lungs 

Several strategies for detecting anomalies in 

CTSIs in the literature involve intensity or 

colour thresholding. CTSIs are often pre-

processed using IMPTs to increase sharpness, 

and then the picture is thresholded to extract 

related components. These segmented areas' 

area and pixel values are passed as features for 

further analysis of LDs anomalies. Rules [10], 

sizes [11], thresholding [12] [13], template 

matching [14], 3D templates [15], binarization 

[16], multi-scale filtering [17], shape features 

for each segmented region [18] have all  used 

for detecting LDs in CTSIs. DLTs (Deep 

learning techniques)  have also been explored 

lately for lung nodule detections [19]. Thus, the 

major contribution of this paper is in discussing 

challenges and proposals for automated 

extraction of features from CTSIs which can be 

inferred by other researches for preparing a 

clean line of action related to them. 

Following this introductory section, a detailed 

review of literature of feature extraction 

techniques is section two. Section three 

discusses issues and challenges while section 

four concludes this paper.  

 

II. LITERATURE REVIEW 

FEs are the base for diagnostics, classifications, 

clustering and detections. IMPTs,  irrespective 

of image types namely binary, colored or gray 

scale, can extract features. Study of FEs evokes 

interest in researches for choosing suitable 

features in applications. This section provides 

details of studies in references to FE proposals. 

Figure 2 depicts a generic classification using 

FEs for input CTSIs.   

 

Fig. 2 – FE based Classifications 

FEs can be extracted from images using their 

Geometrical, Statistical, Textural and Color 

features and are utilized to obtain as much 

information as possible where selection and 

effectiveness of features chosen and extracted 

is a major challenge [20]. These base 
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characteristics can divided further into sub-

types as depicted in Figure 3. 

 

Fig. 3 - Image qualities used in FEs 

• Color Features: Moments, histograms, 

and average RGBs [21] are colour attributes 

and are detailed below: 

o Color moments: They are colour scales 

that distinguish pictures based on colour 

properties and are probability distributions of 

means, SDs, and Skews. The average colour 

values of pictures are their means. SDs 

(Standard Deviations) are the square root of 

distribution variances, whereas skew values are 

a measure of the degree of asymmetries in 

distributions. 

o Color histograms: Colors are 

commonly utilised features due to their 

intuitive natures in comparisons to other 

characteristics and have more significant 

information and simplicity in  extractions from 

images. Histogram distributes these colours 

using a set of boxes. 

o Average RGBs: The purpose of 

employing this feature is to do picture filtering 

when using multiple features, and another 

reason for doing so is because representing 

features as vectors requires just a tiny amount 

of data [22]. 

• Statistical Features: Approaches do not 

attempt to comprehend texture's hierarchical 

structures and use non-deterministic features 

for determining distributions/connections 

between grey levels to express textures 

indirectly. Contrast, Entropy, RMS, Energy, 

Kurtosis, Correlation, Variance, Fifth and sixth 

central moments, and Smoothness are all 

statistical texture properties of pictures [27]. 

The statistical contrast between the reference 

pixel and its neighbour is a measure of intensity 

or gray-level fluctuations. The brightness of the 

item colour, as well as the brightness of other 

objects in the same display region, determines 

contrast. There is a little contrast when two 

pixels differ by one, and the weight is one. 

When I and j differ by two, the contrast 

increases and the weight increases to four. In 

thermodynamics, entropy is a measurement of 

system disruption. Entropy measurement is an 

excellent approach to determine the quantity of 

information contained in an event as well as the 

level of unstable signal disruption. With the 

progression of mistake, RMSEs (Root Mean 

Square Errors) steadily grow in value. They do 

not, however, give information on any specific 

incipient fault stage, although the value 

continuously rises as the fault progresses.  

Energy in statistics can be describe as a 

measurement of information while assessing 

probabilities (maximum a priori) coupled with 

Markov Random values where positive 

measures maximize while negative measures 

minimize. Kurtosis can assess stability of 
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distributions, which relates to normal 

distributions. Correlations are basic processes 

used to extract the information from the images 

while Variance defines the mean of a signal’s 

square that can be computed. Fifth and sixth 

central moments are used to compute 

deviations from averages. Smoothness is used 

to assess comparative smoothness from gray 

level disparities and used to create relative 

smoothness recipes.  

• Geometry Features: These features 

refer to shapes and sizes of shapes. There are 

eight types of geometry features as following : 

o Area: It Is the difference between 

perimeters and extensions of forms. There are 

several known formulae for basic shapes like 

triangles, rectangles, and circles. Any polygon 

area may be determined using these formulae 

and by splitting the polygon into triangles or 

circles to generate curved forms with 

boundaries, which can then be gathered once 

the areas have been calculated, and when 

polygons are irregular, the areas can be 

calculated using Trapezoidal Gauss equation  

[28] 

o Slope: A straight line is a collection of 

points with a constant slope between any two 

locations. The value of the ratio of vertical 

change to horizontal variation is commonly 

used to estimate the slope of a straight line. The 

slope generally refers to the two-point line's 

slope. The horizontal line, Zero, is defined as 

the parallel line of the x-axis. The vertical line 

is a parallel line on the y-axis with an unknown 

slope. The slope of two parallel lines is always 

equal [29].  

o Perimeter: It refers to the length of the 

line that encircles two-dimensional forms like 

circles, squares, rectangles, and irregular 

shapes. Equilateral and non-equilateral 

perimeters can both be determined [30]. 

o Centroid: The centroid is a fixed 

location in the object through which the lines 

that indicate the object's weight travel. The 

centroid differs from one another in terms of 

shape or acclimatisation, and this difference 

determines the status of a centroid [31]. 

o Irregularity Index: The irregularity 

index (L) is equal to one only for circles and is 

less than one for all other forms when 

calculating the boundaries of irregular shapes 

[32].  

o Convex Area: In the Euclidean level, 

the closed convex or convex is the set X of 

points in which the smallest convex set 

includes X. When you're X, for example, you're 

only a little part of the plane. The number of 

pixels in the convex picture is the convex area. 

The dimensions of the square that surrounds the 

region. A convex hull[34] is used as the 

bounding box. 

o Solidity: Determines the pixel ratio of a 

convex hull in the area[35]. 

• Texture Features: The most essential 

aspect of medical/sensor pictures is texture, 

which is described as a surface expression of 

human visual systems of natural things. These 

characteristics are simple to perceive but 

difficult to quantify in terms of mathematical 

matrices, generally used in 

quantitative/qualitative analysis. They can be 

categorized into GLCMs (Gray Level Co-

occurrence Matrices) and Tamura [23]. 

o GLCMs: Histograms can recover 

textures of damaged tissues in photos by 

measuring grey values that occur at each 

particular image offset [24]. Entropy, Contrast, 

Correlation, Energy, and Homogeneity are 

GLCM-specific texture characteristics [25]. 

The texture of input pictures is distinguished 

using entropy, a statistical measure of 

unpredictability. In pictures, contrast is used to 

calculate densities between pixels and 

neighbouring pixels. Scales that assess the 

likelihood of certain pixel pairings are known 

as correlations. In GLCMs, energy is defined as 

the sum of squared components, also known as 

angular second moments or uniformities. The 

measure of distribution approximations in the 

elements of GLCMs is called homogeneity. 

o Tamura: These qualities give 

descriptions for quantitative analysis, and 

Tamura's attributes include Contrast, 

Directionality, Coarseness, Roughness, Line-

Likeness, and Regularity [26], which are 
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standard descriptions for all sorts of picture 

textures. Coarseness is a term used to describe 

how coarse something is. Essentially tied to the 

size of primal elements that compose textures 

and distances between grey levels in changes. 

Scales, duplications, and principal image 

textures can all be directly linked to it. Even in 

the event of a smaller tissue, coarseness seeks 

to discover the maximum size in which the 

tissue is present, and differences between pairs 

of averages belonging to non-overlapping 

regions are computed. Tamura's Contrast is a 

measurement of grey level distribution that 

changes depending on whether it's black or 

white. In its computations, the central moments 

of the fourth and second orders of grey levels 

are utilised. The frequency of local edges 

directed against directional angles in a 

distribution is referred to as directionalality. 

Within an area, it is a global value. It can 

estimate overall degrees of picture directivities 

by discriminating between an image's 

consistencies within areas, albeit it can't discern 

between trends or patterns. Line-Likeness is a 

term used to describe the forms of texture 

primitives. Straight or wave-like primitives in a 

line-like texture can't be fixed in their 

orientation. Frequently, the line-like texture is 

also directed. In pictures, regularity is defined 

as a consistent pattern or equivalent 

components. The total of coarseness and 

contrast measurements is roughness. 

FEs are also important to AIS (artificial 

intelligence system) and MLTs (Machine 

learning techniques) as techniques can extract 

relevant image features and label them for 

classifications which are based on labels. 

Moreover, performance accuracies of 

classification models depend on FEs. Figure 4 

depicts initial segmentation of CTSIs. 

 

Fig. 4 –initial segmentation of CTSIs: (a) Input 

Image;  (b) Input image’s histogram; (c) 

thresholded image; (d) complemented image; 

(e) binary segmentation map; (f) binary map 

after connecting components (g) Identification 

of lungs; (h) noise removed lungs 

This demonstrative research looked into data 

from 160 CTSIs of patients with sick lungs 

from 3.2 Iowa University's Hospital. Patients 

with (a) lung abnormalities (4–29 mm) and (b) 

malignant abnormalities confirmed on 

histology or benign abnormalities verified on 

histopathology or by size stability for at least 

24 months were included in the study. Table 1 

contains demographic statistics.. 

Table 1 – Dataset’s Demographic features 

 Malignant Benign 

Number of patients 100 60 

Female 55 (55%) 36 (60.0%) 

Male 45 (45%) 24 (40.0%) 

Age, yrs (mean ± SD) 67.5 ± 12.1 52.8 ± 12.9 

Pack-years (mean ± SD) 34.8 ± 32.1 12.2 ± 15.8 

To establish ROIs (regions of interest) 

surrounding each anomaly, a graduate student 

skilled in medical image processing did manual 

segmentations. With the obtained feature 

information, each ROIs were designated 

abnormality or normal. The intensity, shape, 

and texture of ROIs were assessed using these 

biomarkers. This was a secondary examination 

of de-identified data that had been obtained 

with the University's permission. The 

performances based on FEs used are listed as 

Table 2. 
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Table 2 – FEs and their comparative 

performances 

Database 

Contents 
Samples 

Count 

  

Features 

  

Accuracy 

Percentage 

  

Lung 

CTSIs 

Training Testing 

Training:100 

CTSIs 

  

Geometry 99 96 

Statistic 98.5 95 

Testing :60 

CTSIs 

  

Color 97 94 

Texture 96.5 93 

  Geometry 99 94 

 

III. Discussion 

Medical imaging is often evaluated visually or 

subjectively, leaving a significant amount of 

latent information in the pictures unused. 

Extraction of quantitative data from clinical 

images is one technique to gain access to this 

concealed information. Visual evaluation, in 

particular, can not appropriately detect 

variability in imaging data. Tumor 

aggressiveness and poor patient outcomes are 

linked to intratumoral heterogeneity. In studies 

evaluating the diagnosis, prognosis, and 

treatment response of LDs, metrics, notably 

texture analysis metrics, have been used to 

quantify intra-tumor heterogeneity. A typical 

radiomic evaluation involves a texture analysis, 

shape, and size [37] [38], [39]. The technique's 

basic concept is that the gray-scale values that 

create the picture of the anomalies, as well as 

their spatial and temporal interrelationships, 

represent the tumor's phenotypic changes, 

which are suggestive of genetic and other 

molecular alterations [40]. Although there is a 

lot of interest in employing features for 

noninvasive LD evaluation, the lack of 

consistency and generalization of results makes 

clinical procedures difficult to translate [41] 

[42] [43] [44]. Texture is described in material 

science as a measure of a surface's variation; a 

rough-textured material would have a high rate 

of change in the high and low points of a 

surface compared with smooth textures [45]. 

Image texture in radiology refers to changes in 

the grayscales that constitute a ROI. When 

compared to a smooth-textured material, the 

picture of a rough-textured material would 

show a high rate of change in the high and low 

points of a surface (the gray-scale value). A 

typical radiomics workflow consists of four 

modules: picture capture, image segmentation, 

feature extraction, and statistical analysis at the 

most basic level. The initial step in the 

radiomics procedure is image acquisition. 

Figure 5 shows a diagram of an image-based 

process for clinical evaluations. 

Fig. 5—Schematic display of image based Clinical assessments 
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Clinical imaging technologies now accessible 

allow for a wide range of acquisition and 

reconstruction techniques. This is not a barrier 

in terms of visual or qualitative imaging 

evaluation. When pictures are quantitatively 

evaluated to extract useful data, however, 

differences in acquisition and image 

reconstruction parameters lead to inconsistent 

results across datasets, especially in multicenter 

investigations [46]. Image Segmentation 

follows, which entails determining a ROIs, 

which can be done automatically, semi-

automatically, or manually. Manual 

segmentations are accurate, but time-

consuming and subjective [47]. Automatic 

segmentations are objective, but prone to 

errors, especially when there are image 

distortions and noises. Active contours [48], 

level sets [49], and regions/graphs based 

approaches [50] are some of the most 

extensively used automated segmentation 

algorithms. 

 

Fig. 6 - Example of object recognitions 

(a) object demarcation (b) for the left lung 

(green) and right lung (red) on a CTSI 

There is presently no approved segmentation 

standard. As seen in Figure 7, poor boundary 

identification might lead to erroneous findings. 

 

Fig. 7. Inaccurate boundary identifications 

Axial (a, b) and coronal (c, d) CT images show 

that cavities and consolidation (arrow in a, c) 

can lead to inaccurate segmentation (red 

contours in b, d). 

More recently, MLTs can also be used for FEs. 

They also select suitable features 

(Dimensionality Reduction) when used for FEs. 

These algorithms can be categorized as filters, 

wrappers and embedded methods. Filters 

function without taking the classifier into 

account. As a result, they are extremely 

computationally efficient. Multivariate and 

univariate approaches are the two types. 

Multivariate approaches can uncover 

correlations between features, whereas 

univariate methods look at each feature 

individually. Wrappers are better at picking 

features because they train and test in the 

feature space, taking into consideration the 

model hypothesis. As a result, wrappers have a 

significant disadvantage: computational 

inefficiency, which becomes increasingly 

obvious as the feature space develops. They 

can discover feature dependencies, unlike 

filters. Wrappers are divided into two types: 

random and deterministic. Embedded 

Techniques are faster than wrappers in terms of 

computing, but they make classifier-specific 

choices that may not work with any other 

classifier. This is because the best collection of 

features is produced when the classifier is built, 

and the selection is influenced by the 
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classifier's assumptions. Random forests are a 

well-known embedding approach. Ensembles 

are a collection of classifiers. They create 

decisions iteratively by discarding small 

fractions of features with lowest importance. 

Table 3 lists comparative performances of 

MLTs where ensembles perform the maximum 

in terms of classification accuracy with 

extracted feature subsets.. 

Table 3 - comparative performances of MLTs 

Classifier Sensitivity Specificity Precision Accuracy 

KNN 0.784245 0.98994 0.97482 0.887355 

DT 0.900165 0.9282 0.92421 0.914235 

SVM 0.857955 0.970935 0.960855 0.91455 

RF 0.952035 0.9534 0.952665 0.952665 

 

IV. Conclusion 

Detecting LDs in early stages highly increases 

the treatment probability. AIs and MLTs are 

used to help detect these abnormalities and 

based on extracted features. This paper 

provides a critical review of existing lung 

segmentation methodologies on CTSIs to help 

doctors make better judgments when choosing 

tools for lung field segmentations The 

advantages and disadvantages of various FEs 

were highlighted in this study. The factors that 

affect speed gains based on picture texture 

metrics are discussed in this article. The major 

purpose is to make recommendations that may 

be used to assist plan and assess future 

investigations. The study also acquired 160 

images and proposed FEs were evaluated for 

their extraction capabilities. Classifiers were 

also evaluated on the extracted feature sets. It 

can be concluded that increasing the accuracy 

can be achieved by using ensembles and 

generated FEs can be based more geometrical 

features. 

 

Reference 

S[1] Siegel, R.L.; Miller, K.D.; Jemal, A. 

Cancer statistics, 2018. CA-Cancer J. Clin. 

2018, 68, 7–30.  

[2] Capocaccia, R.; Gatta, G.; Dal Maso, L. 

Life expectancy of colon, breast, and 

testicular cancer patients: An analysis of 

US-SEER population-based data. Ann. 

Oncol. 2015, 26, 1263–1268. 

[3] Nasrullah, N.; Sang, J.; Alam, M.S.; 

Mateen, M.; Cai, B.; Hu, H. Automated 

Lung Nodule Detection and Classification 

Using Deep Learning Combined with 

Multiple Strategies. Sensors 2019, 19, 

3722. 

[4] Rajan, J.R.; Chelvan, A.C.; Duela, J.S. 

Multi-Class Neural Networks to Predict 

Lung Cancer. J. Med. Syst. 2019, 43, 211.  

[5] Akram, S.; Javed, M.Y.; Akram, M.U.; 

Qamar, U.; Hassan, A. Pulmonary 

Nodules Detection and Classification 

Using Hybrid Features from Computerized 

Tomographic Images. J. Med. Imaging 

Health Inform. 2016, 6, 252–259.   

[6] Netto, S.M.B.; Silva, A.C.; Nunes, R.A.; 

Gattass, M. Automatic segmentation of 

lung abnormalities  with growing neural 

gas and support vector machine. Comput. 

Biol. Med. 2012, 42, 1110–1121.  

[7] Cascio, D.; Magro, R.; Fauci, F.; Iacomi, 

M.; Raso, G. Automatic detection of lung 

abnormalities  in CT datasets based on 

stable 3D mass–spring models. Comput. 

Biol. Med. 2012, 42, 1098–1109.  

[8] Lee, S.L.A.; Kouzani, A.Z.; Hu, E.J. 

Automated identification of lung z. In 

Proceedings of the 10th Workshop on 

Multimedia Signal Processing (MMSP), 

Cairns, Australia, 8–10 October 2008; pp. 

497–502. 

[9] Keshani, M.; Azimifar, Z.; Tajeripour, F.; 

Boostani, R. Lung nodule segmentation 

and recognition using SVM classifier and 

active contour modeling: A complete 

intelligent system. Comput. Biol. Med. 

2013, 43, 287–300. 

[10] Özekes, S. Rule-Based Lung Region 

Segmentation and Nodule Detection via 

Genetic Algorithm Trained Template 

Matching. Istanbul Ticaret Üniversitesi 

Fen Bilim. Derg. 2007, 6, 17–30. 

[11] Pu, J.; Zheng, B.; Leader, J.; Wang, X.; 

Gur, D. An automated CT based lung 

nodule detection scheme using geometric 

analysis of signed distance field. Med. 

Phys. 2008, 35, 3453–3461.   

[12] Messay, T.; Hardie, R.C.; Rogers, S.K. A 

new computationally efficient CAD 

system for pulmonary nodule detection in 

CT imagery. Med. Image Anal. 2010, 14, 

390–406.  



M. MUTHURAMAN 7234 

 

[13] Tan, M.; Deklerck, R.; Jansen, B.; Bister, 

M.; Cornelis, J. A novel computer-aided 

lung nodule detection system for CT 

images. Med. Phys. 2011, 38, 5630–5645.  

J. Imaging 2020, 6, 6 

[14] Jo, H.H.; Hong, H.; Goo, J.M. Pulmonary 

nodule registration in serial CT scans 

using global rib matching and nodule 

template matching. Comput. Biol. Med. 

2014, 45, 87–97.  

[15] Ozekes, S.; Osman, O.; Ucan, O.N. 

Nodule detection in a lung region that’s 

segmented with using genetic cellular 

neural networks and 3D template matching 

with fuzzy rule based thresholding. 

Korean J. Radiol. 2008, 9, 1–9.  

[16] Dolejsi, M.; Kybic, J.; Polovincak, M.; 

Tuma, S. The Lung TIME: Annotated lung 

nodule dataset and nodule detection 

framework. In Proceedings of the Medical 

Imaging 2009: Computer-Aided 

Diagnosis, Lake Buena Vista (Orlando 

Area), FL, USA, 7–12 February 2009; p. 

72601U. 

[17] Narayanan, B.N.; Hardie, R.C.; Kebede, 

T.M.; Sprague, M.J. Optimized Feature 

Selection-Based Clustering Approach for 

Computer-Aided Detection of Lung 

Nodules in Different Modalities. Pattern 

Anal. Appl. 2019, 22, 559–571.   

[18] da Silva Sousa, J.R.F.; Silva, A.C.; de 

Paiva, A.C.; Nunes, R.A. Methodology for 

automatic detection of lung nodules in 

computerized tomography images. 

Comput. Methods Programs Biomed. 

2010, 98, 1–14.  

[19] Negahdar, M.; Beymer, D.; Syeda-

Mahmood, T. Automated volumetric lung 

segmentation of thoracic CT images using 

fully convolutional neural network. In 

Proceedings of the Medical Imaging 2018: 

Computer-Aided Diagnosis, Houston, TX, 

USA, 10–15 February 2018; Petrick, N., 

Mori, K., Eds.; Volume 10575, pp. 356–

361. 

[20] Ethem Alpaydin 2014 Introduction to 

Machine Learning (MIT Press). 

[21] S.R. Kodituwakku and S.Selvarajah 2011 

Comparison of Color Features for Image 

Retrieval ( Indian Journal of Computer 

Science and Engineering Vol 1, No 3) pp 

207-211. 

[22] Amera H.M alzoubi 2015 Comparative 

Analysis of Image Search Algorithm using 

Average RGB, Local Color Histogram 

Global Color Histogram and Color 

Moment HSV(thesis, Faculty of Computer 

Science and Information Technology 

Universiti Tun Hussein Onn Malaysia). 

[23]  C. Umamaheswari, Dr. R. Bhavani 

and Dr. K. Thirunadana Sikamani 2018 

Texture and Color Feature Extraction from 

Ceramic Tiles for Various Flaws Detection 

Classification ( International Journal on 

Future Revolution in Computer Science & 

Communication Engineering Vol 4 ,Issue. 

1)pp 169 – 179. 

[24] M. S. Ahmad, M. S. Naweed, and M. Nisa 

2009 Application of texture analysis in the 

assessment of chest radiograph ( 

International Journal of Video & Image 

Processing and Network Security 

(IJVIPNS) Vol 9,No 9) pp 291-297.  

[25] .Fritz Albregtsen 2008 Statistical Texture 

Measures Computed from Gray Level Co-

occurrence Matrices ( Image Processing 

Laboratory Department of Informatics 

University of Oslo ). 

[26] Peter Howarth and Stefan Ruger 2004 

Evaluation of Texture Features for 

Content-Based Image Retrieval 

(Department of Computing, Imperial 

College London South Kensington 

Campus London ) 

[27] Jaspinder Kaur, Nidhi Garg and Daljeet 

Kaur 2014 Segmentation and Feature 

Extraction of LungRegion for the Early 

Detection of Lung Tumor( International 

Journal of Science and Research(IJSR) 

Vol 3, Issue 6). 

[28] A. H. Stroud 1971 Approximate 

Calculation of Multiple Integrals( 

Prentice-Hall Inc., Englewood Cli_s, N. J. 

[29] Christopher Clapham, James Nicholson 

2009 Oxford Concise Dictionary of 

Mathematics( OUP oxford). 

[30] Dr Yeap Ban Har,Dr Joseph Yeo,Teh 

Keng Seng,Loh Cheng Yee,Ivy Chow,Neo 

Chai Meng andJacinth Liew 2018 New 

Syllabus Mathematics Teacher's Resource 

Book1(OXFORDUNIVERSITY Press) 

7th edition. 

[31] Dan B. Marghitu and Mihai Dupac 2012 

Advanced Dynamics ( Springer) chapter 2 

pp 73-141. 

[32] S. A. Patil and V. R. Udpi 2010 Chest x-

ray features extraction for lung cancer 

classification(Journal of Scientific and 

Industrial Research Vol 69) pp 271-277. 



7235  Journal of Positive School Psychology  

 

[33] R. C. Gozalez and R. E. Woods 2002 

Digital Image Processing Using Matlab, 

2nd ed, Gatesmark ( USA) chapter 12 pp 

642-654. 

[34] Nitin S. Lingayat and Manoj R. Tarambale 

2013 A Computer Based Feature 

Extraction of Lung Nodule in Chest X-

Ray Image( International Journal of 

Bioscience, Biochemistry and 

Bioinformatics Vol 3, No. 6) . 

[35] K. P. Aarthy and U. S. Ragupathy 2012 

Detection of lung nodule using multiscale 

wavelets and support vector machine( 

International Journal of Soft Computing 

and Engineering (IJSCE) Vol 2, Issue 3). 

[36]  The National Lung Screening Trial 

Research Team. Reduced lung-cancer 

mortality rate with low-dose computed 

tomographic screening. N Engl J Med. 

(2011) 365:395–409. doi: 

10.1056/NEJMoa1102873 

[37] Gillies R, Kinahan P, Hricak H. 

Radiomics: images are more than pictures, 

they are data. Radiology. (2016) 278:563–

77. doi: 10.1148/radiol.2015151169  

[38] Zhang B, He X, Ouyang F, Gu D, Dong Y, 

Zhang L, et al. Radiomic machine-learning 

classifiers for prognostic biomarkers of 

advanced nasopharyngeal carcinoma. 

Cancer Lett. (2017) 403:21–7. doi: 

10.1016/j.canlet.2017.06.004  

[39] Kumar V, Gu Y, Basu Sea. Radiomics: the 

process and the challenges . MagnReson 

Imaging. (2012) 30:1234–48. doi: 

10.1016/j.mri.2012.06.010 

[40] Ortiz-Ramón R, Larroza A, Ruiz-España 

S, Arana E, Moratal D. Classifying brain 

metastases by their primary site of origin 

using a radiomics approach based on 

texture analysis: a feasibility study. Eur 

Radiol. (2018) 28:4514–23. doi: 

10.1007/s00330-018-5463-6 

[41] Kuruvilla J, Gunavathi K. Lung cancer 

classification using neural networks for 

CT images. Comput Methods Prog 

Biomed. (2014) 113:202–9. doi: 

10.1016/j.cmpb.2013.10.011 

[42] Lambin P, Rios-Velazquez E, Leijenaar 

Rea. Radiomics: extracting more 

information from medical images using 

advanced feature analysis. Eur J Cancer. 

(2012) 48:441–6. doi: 

10.1016/j.ejca.2011.11.036 

[43] Lin Y, Leng Q, Jiang Z, Guarnera MA, 

Zhou Y, Chen X, et al. A classifier 

integrating plasma biomarkers and 

radiological characteristics for 

distinguishing malignant from benign 

pulmonary nodules. Int J Cancer. (2017) 

141:1240–8. doi: 10.1002/ijc.30822  

[44] Parmar C, Leijenaar RTH, Grossmann P, 

Velazquez ER, Bussink J, Rietveld D, et 

al. Radiomic feature clusters and 

Prognostic Signatures specific for Lung 

and Head &neck cancer. Sci Rep. (2015) 

5:1–10. doi: 10.1038/srep11044 

[45]  Zhu X, Dong D, Chen Z, Fang M, 

Zhang L, Song J, et al. Radiomic signature 

as a diagnostic factor for histologic 

subtype classification of non-small cell 

lung cancer. Eur Radiol. (2018) 28:2772–

8. doi: 10.1007/s00330-017-5221-1 

[46]  Huang Y, Liu Z, He L, Chen X, Pan 

D, Ma Z, et al. Radiomics signature: a 

potential biomarker for the prediction of 

disease-free survival in early-stage (I or II) 

non small cell lung cancer. Radiology. 

(2016) 281:947–57. doi: 

10.1148/radiol.2016152234 

[47] Lambin P, Leijenaar R, Deist Tea. 

Radiomics: the bridge between medical 

imaging and personalized medicine. Nat 

Rev Clin Oncol. (2017) 14:749. doi: 

10.1038/nrclinonc.2017.141 

[48] Krafft SP, Briere TM, Court LE, Martel 

MK. The utility of quantitative ct 

radiomics features for improved prediction 

of radiation pneumonitis. Med Phys. 

(2018) 45:5317–24. doi: 

10.1002/mp.13150 

[49] 21. Sun T, Wang J, Li Xea. 

Comparative evaluation of support vector 

machines for computer aided diagnosis of 

lung cancer in CT based on a multi-

dimensional data set. Comput Methods 

Prog Biomed. (2013) 111:519–24. doi: 

10.1016/j.cmpb.2013.04.016 

[50] 22. Kuhn M, Johnson K. Applied 

Predictive Modeling. New York, NY: 

Springer (2013). 


