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Abstract

In this paper, introduce and study a subclass of multivalent functions that use the generalized
derivative operator, There are a lot of things that can happen with coefficient inequalities growth and
distortion, extreme points, radii that are very close to convexity, and more. star likeness and convexity
for these subclasses.
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close to convexity, and more.

INTRODUCTION f(2)*g(2) =(f xg9)(2)
— P
This is how it is shown. E(p) the class of the Z
functions defied work with the form shown + anbpz" . (z € U,p
here:
h=p+1
EN). (1.3)

= zP h . . .
fz)=z"+ Z apz” ,(z€ U, a2 0,p A function f belong to the class E(p) is said to
h=p+1 be multivalent starlike of order 0, multivalent

EN convex of order 0 and multivalent closed-to-
={123,..}) (1.1) convex of order d,where (pEN, ,0<0<p,z€U),
which are analytic function and p-valent in the respectively if
open unit disk U={zeC:|z|<1}. Let B(p) , "
denotes a subclass of E(p). Hadamard product Re {Zf (Z)} > 9 Re {1 n zf (Z)}
(or convolution) (f*g) for two analytical f f(2) ’ f'(2)
defined in equation (1.1) and g(z) given b !
q oi ) 9@ 9 Y > 0 and Re{];p(_zl}>6.
=zP + Z bpz", (1.2) The following operator [was introduced by
h=p+1 elhaddad and Darus 3]:

which defined by for the function f, belongs to the class E(p), we

have:
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Dip(v.e,a1,by)f (2)

_ Zp
Z [p +(h—p)A™" ( %=1(an)h_p> anz" (14)
oy rh=p) + )\ s (0dn—p ) (= p)!
We write for the sake of simplicity
where a neC,b _ieC-{0,-1,-
2,...},G0=1,....,r,n=1,...,s) and s<r+1.
+ MY ag, b )
DI (v, e, a3, by)f (2) = 27 + Z [p U—p) | pve)(@obr) ;. (15)
& U—p)!
[where meN_0=Nu{0} >0 and Y] _((-p,v,e) ) (a_s,b 1), is given by
I'(e) ( izl(an)j-p>
Yii_ (ag, b)) = - : 1.6
Umpo) (s br) = TGy ¥ o) \ Ty (19

See [2] for more detail on this operator.

Equation (1.5), we introduce class of the
following class of analytical and multivalent
functions.

(2 —p)z[D}}, (v, e, a1, b)) f (D))" + 2%[D}, (v, e, a4, b)) f ()]

Definition 1.1. A function feE(p) belongs in
the class E(p,y,A) if

(34— 1)z[DY, (v, e,a1, b)) f ()] + Az2[D}, (v, e, a1, b)) f (2)]"

1, (1.7)

where (p >1,<y<10<A< %),a1 €C b, € C\{0,-1,-2,..},]z| < 1,

v,e € C,Re(v) > 0,Re(e) > 0,m € N, = N U {0}.

Analytical and multivalent functions have been
looked at by many different people over the
years, help ensure that the coefficients are in
for example, see Refs ([1], [2], [4], [5], [6], [7].
[8], [9] and [10]). in this is an of work, we
analyze and study go over for the class
E(p,y,A), of analytic functions and multivalent.
Also, coefficient bounds are some of the
characteristics, the theorem of growth and
distortion, inclusive properties, and extreme
functions in our class are obtained.

[oe]

j=p+1

<20 +p) -yl - DI 21

GEOMETRIC
E(p,v:A)
In this section, we present theorems with

their evidence to address part of these
geometric properties for such class E(p,y,A)

PROPERTIES FOR

Theorem 2.1.A function f in equation (1.1)
belongs to the class E(p,y,A) if and only i

z [p - J—y+/1(1+1)]J(1—1)[

p + (] p)l] Y(j—p,u,e) (as' br) |a|
/)

G—n)!

where (p > 1,2 <y<10<A< %) and Y(;_p.,¢)(as, b,) is given by the equation (1.6).

The result is sharp for the following function

1A +p)—vlp(e — DG —p)!

f(2) =zP +

[ = =¥+ 2G + DUG = DYpue(as, by) LB

7. (2.2)
P

Proof: Suppose that f € E(p, y,A), then by the equation (1.7), we have:

(2 - p)z[D, (v, e,24, bl)f(z)]” + 22[D}, (v, e,a5, by )(2)]

nr

(BA=Y)z[D, (v, a4, bl)f(z)]” +222[D (v, e, a4, bl)f(z)]m
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= |(37\ —Vz[D (v, e,a1, b)()] + Az [DI (v, &, a4, by (2)]
—|(2 - p)z[Dy, (v,e, al,bl)f(z)]" +22[Dy, (vye, al,bl)f(z)]m|.
=|Gr—y =2+ p)2[B 0, e 2, b)@)] | + |4 - D22 [DF, (v, €21, b)EE] |

[oe]

[p + (h - p))\]m Y(h—p,u,e) (as' br) h-2
h
p+1 p

IH|

Br—y—-2+p)z|p(p—1DzP 2 +hth—1)

h=

(h —p)!

+

[p + (h - p)}\]m Y(h—p,u,e) (as' br) a Zh_3
p (-pt "

- D22 lp(p ~ D -2 +hth- DO -2) )
h=p+1

Br—y—=2+p)p(p—1DzP" 1+ BA—y—-2+p)h(h

p+ (h - p))\]m Y'(h—p,u,e) (asv br) h—1

-v ) [ h—py

h=p+1

- h'_ A m Y, -p,v.e s'br
R N L B e R P

h=p+1

+

A1 +p) = ylp(p — DzP~!

[p + (h - p)x]m Y-(h—p,u,e) (an br) Zh_l

+ Z [p—h—-y+Ath+DJhth-1) h—p)! ay

h=p+1
< A1 +p) —vlp(p — D)|zP7|

R _ p+ (h - p)}\ mY(h—p,u,e) (as' br) -1
+h;+1[p h—y+A(h + Dlh(h 1)[ ] S S |
L N [ h =y AR+ DIRG = 1) [p + (h = P)A]" Yonepae (a5, br) »
< D TG e - D o e = e G

A>0h>p, @ >0, (h — p)! > 0and Yy_p.e)(as, by) is given by (1.6)

N + (h—pA]" Yoo ag, b,
[p—h—y+Ath+ 1D]hth—1) p+(h—p) ] (h-pve)(@s br)
h= (h—p)!
=p+1

Conversely, a suppose that equation (1.8) holds |z| ='s, s < 1,then

| A= V)2[BJ, (v, €21, bR + W22 [Dfy (v, €21, b)E)] |
~|@ =D} e,a1,b)f @] + 22[ Dy v, 0,01, b)F )] |
- |(3/1 —y—2+ p)Z[ﬁle(v, €, ay, b1)t(z)]”| + |(/1 - 1)22[5/{2; (v, e, aq, bl)t(z)]’”|

p+(h— P)A]m Yh-pve) (s br) N h—z‘

lap| < [A(1 +p) —ylp(p — D).

=|BA—-y—-2+p)z|p(p—1)zP"2+h(h—1) Z [

h=p+1

p (h—p)!

_l_

[p + (h— p)/l]m Y(h—p,v,e) (as, by) @ zh=3
p (h-p "

G- 1z [p(p - D - 227 +h(h - DB -2) Y

h=p+1
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Bl-—y—-2+pp(p—1zP 1+ BA—y -2 +p)h(h

_ 1) Z [p + (h - p)l]m Y(h—p,v,e) (as' br) h—1
p

anz
— |
h=p+1 (h P)-

+

p + (h - p)l]m Y(h—p,v,e) (as: br) h-1

A-Dplp-Dp@-2)zP"t+@A—-1h(h—1)(h-2) Z [ » (h—p)! anz

h=p+1

[A(1+p) —ylp(p — D2z

14 + (h - p)l]m Y(h—p,v,e) (aS’ br) h-1

+ Z [p—h—y+/1(h+1)]h(h—1)[ (h—p)  ?

h=p+1

< [2@ +p) —ylp(p — D|z"?

+ Z [p—h—y+/1(h+1)]h(h—1)[

h=p+1

h—1|

+ (h=p)A]" Yo as, b,
p ( P) ] (h p,v,e)( s )lah”Z

(h—p)!
f:m—h—y+Mh+nmm—1wp+m—pnrnmw@mym)
O

A1+p)—ylpp-1) p (h—p)! lanllz" |

p + (h - p)l " Y.(h—p,v,e) (aS’ br)
Z[p—h—y+l(h+1)]h(h—1)_ | e

h=p+1
where |a;| is given by (1.8). So, we have:

C p + (h - p)l " Y.(h—p,v,e) (aS’ br)
Z[p—h—y+l(h+1)]h(h—1)_ |

h=p+1

then f € E(p, v, A). the theorem is established .

< |zP7Y +
h=p+
(oo}

lapl < A1 +p) —yvlp(@ - 1)

lap| = [A(1+p) —ylp(p—-1) <0

Corollary 2.2.Let f € E(p,y,A). Then,

w < (A1 +p) —ylp(p — D(h - p)! (2.3)

[P~ h =y + 20k + DIAGh = D¥r_py (@ b) [FEEZPA]

where, (h=p+1p+2..)(p21i<y<10<21<3).

GROWTH AND DISTORTION f(2)

THEOREMS = zP
A1 +p) — -1
Bounds of [f(z)] and [f** (z)| will be addressed + 40+ —vlpe -1 T
by the following theorems respectively, where (A +2) = A +VIp(1 + p)Vave(as by) [pT]
the bounds for multivalent function f(z) in the
form
A1 +p) — -1
B gpt1 20 +p) —ylp(p -1 )
A +2) = (1 +PIp( + D)o (a5, b) [P

< P 4 Pt A0 +p) —ylp(p -1
- p+A

A +2) = (1 + PP+ D)iser (@5, b) [
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for|z| =s,s < 1.
Proof. As far as theorem (2.1) is concerned, we have

(o]

Z [p—h—-y+Ah+ D]hth—1)p+ (h— p)/l]m Yin-pv.e)(as, br)

4 A1 +p) —vylp(p—1) 4 (h—p)!
=p+1

certain properties on analytical p-valent functions and

[y —ACh+ D]hth — D) p + 1™
[/1(1 +p) yp(p_l)[ ] Y‘(lve)(as: r) Z Iahl

lapl <1,

h=p+1

- i [p—h—y + A0+ Db~ D p+ (b= p)z]’" Vinopue@b)

e A +p) —vIp -1 p (h—pt T
=p+1

so, we have

(o]

lay] < [A(1 +p) —yIp(p - 1)

p+ A"
h=p+1 [/1(}? + 2) - (1 + V)]p(l + p)y(l,v,e) (as' br) T
From equation (1.1), we have

[o0]

o] oo
F@I=[+ > @z <11+ ) lanl < 574577 > ayl

h=p+1 h=p+1 h=p+1
(A1 +p) —ylp(p - 1)
+ A]m

2 +2) = A+ Ip + P assby) [
And this is how other arguments can be proven.

<sP+

Sp+1

[o0]

o] oo
@I =2+ Y a2 121 = 2271 Y eyl 257 =P ) ayl

h=p+1 h=p+1 h=p+1
(A1 +p) —ylp(p - 1)

+2
20 +2) = A+ I+ Pt (assby) ]
proof is complete.

> sP — sPHl

Theorem 3.2. If f € E(p,y, A4), then for |z| = s,s < 1, we have
(A1 +p) —vyIp(@—-1) )
P<f'(2)l

_|_
A +2) = (1 + PP + D) (asby) |2
(21 +p) —ylp@ -1
A
A0 +2) = L+ VTP + P e (@ b) |
proof: Let f € K% (as, by, 4; h, p), then from equation (2.1), we have
N [A1+p)—vlp(p—-1)
Iahl < p + 1 m
Wt R0 +2) — A+ DI+ )V s b [P
Also, from equation (1.1), we have

psp_l —

<psP~l+ P

@I =[pzP7 4 D hape"| < pP T4+ DS ) al
h=p+1 h=p+1
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<psP™l +

A1 +p)—vlp(p—1)

And this is how other arguments can be proven.

If'@)| = [pzP~" +
h=p+1

2 psp_l —

(A1 +p) —vIp(p - 1)

mS
AP +2) = (1 + V1P + P) Y100 (s, br) [%\]

hapz" 1| = psP~! — (p + 1)s? Z lay|

h=p+1

sP

The proof is complete.

RADII OF STARLIKENESS,
CONVEXITY AND CLOSE-TO-
CONVEXITY

The radii of starlikeness, convexity, and close
to convexity will also be used to change the
following theorems into new ones.

S1 (P; Y, A, a)

A +2) — (1 + VIp + p)Y1ue)(as, by [p%l]

Theorem 4.1.1f the function does what it says it
does, f(z) belongs a follower of class E(p,y,A)
as shown in the figure the equation (1.2).

Then it is multivalent starlike of order
0(0<0<p)in the open disk |z|<s_1, such that

1

(h=3)[A2A +p) —vlp(@p—1)

14 (h—p)!

. [ i (= 0)p—h—y+ah+ Dk~ 1) [p+ (h— p)ar Vopwer(@s b)| "

(h=p+1).
The result is very good for the outside function f(z) given by equation (2.2).

Proof: It's enough to show this is true
zf'(2)
-p
f(2)
for |z] < s1(p,Y,A, @), we have

<p—20, where (0 <0 <p),

2f' () | |2zt + Bpea hanz" ] = plzP + D pes anz]
f(Z) zP + Zﬁ”=p+1 ahZh
_|[ZR=p+1hanz"] = p[ZRps1 anz"] < [Xrp+1(h = D)lanllz|"?]
zP + Z;.lozp+1 ahzh B [1 - Zﬁ=p+1|ahllzlh_p]
zf'(2)
2 2 <p-—0.
Thus @ PI=P 0
o0 (h=0)an|z|""P
If Zh=p+1 (p_a) S 1

Therefore by Corollary (2.2), the last inequality is valid, if it is true,

_ h-p
(h=0)lzI"P _

[p—h—y+A(h+1]h(h—1)

(p—9) (A1 +p)—vylp(p - 1)

equivalently if:

p +'(h'_'p)ﬂ]nly?h—pﬂhe)(as'br)

p (h—p)!

|z]

1
(p—)p—h—y+Ath+ Dht-1D[p+h- p)l]mY(h-p,U,e) (as,br)]ﬁ

=T @-onad+p -vip-D

(- p)! *D
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Theorem immediately follows from (4.1) Then {(z) is multivalent convex of 0 (0<0<p) in

the disk that is open |z|<s 2, were
Theorem 4.2.1f the function does what it says it pen fzi<s_

does f(z) belongs a follower of class E(p,y,A) as
shown in the figure the equation (1.2).

Sz (p! Y, A' a)
1

[(P Np—h-y+Ath+D]h-1D[p+(h— p)/l] l/‘(h—p,v,e) (as, by) h=p
(h—=9)[AA+p)—yIp(p-1) p (h —p)!

for the result is clear for the outside function f(z) given by equation (2.2).

Proof: It's enough to show that

(h=p+1),

1+ﬂ—p‘£p—6, where (0 < 0 < p),
f'(@
for |z| <s,(p,y,A 0), we have
zf"' (z)
' +W‘p’

_ ‘1 z[p(p — DzP~% + ¥ 11 h(h — Dapz"?] — p[pzP~* + X2, hapz"?]
[pzP=1 + Xi_ 41 hapzh=1]

_ [Zﬁo=p+1 hzahzh_l] - [ph2h=p+1 ahZh 1]

[pzP-1 + Yhep+1 hayzP~1]

2f"(z) _ ’ _ By h(h — paylz"P]

f(2) [1 = Zhp+1 haplzlh=P]

zf!’ (Z)_ _

h(th—a h=p
if ( ?glzl <
h=p+1 (p )
Thus, by Corollary (2.2), the last inequality is valid if it is true :
h(h —9)|z|"P cp—h—y+ath+ Dhth— 1) [p + (h - p)l]m Yh-puv.e)(@s br)

(p-9 ~  [A@+p)-vlp(p-1) p (h —p)!
equivalently if

1
(p-dp—-h—y+Aah+D]Ith—-1)[p+(h— p)k]m Yh-pv.e)(@s by) PP
(h=)AA+p)—vlp(p—1) p (h—p)!

s

Thus |1 +

|z| <

(4.2)

theorem immediately follows from (4.2) . Then f(z) is multivalent an order that is close-

to- 0 (0<o<p) i disk |z|<s_3, such
Theorem 4.3.Let the function f(z) defined by thaionvex (0<0<p) in open disk [z}<s 3, suc
equation (1.2) be the class E(p,y,L). '

s3(p,v,4,0)
1

(p Nlp—h—y+Ah+DI(h-1) [p + (h - p)l]m Yin-p.e)(as, br) PP
(A1 +p) —vlp(p -1 (h —p)!

for the result is clear for external function f(z) given by the equation (2.2).

Proof: It's enough to show that

f'@

-1 P

. (h=p+1)

<p-9, where (0 < 9 < p),
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for |z| < s3(p,v, A, ), we have

f'(2) Pzl 4 5y hayz ™t — pzPd —

Sp—1 - = -1 = Z hahZ
h=p+1
< Z hay, | 2|7
h=p+1
f'(z
Thus o1 -pl<p-—-0
hay|z|P

I Z hl |a <1

h=p+1 p )

Thus, by Corollary (2.2), the last inequality is valid if it is true
hlz|"7P _p—h—y+ah+ D]ah - 1) [p +(h - p)/l]m Yih-pve)(as, by)

-9~ [AA+p)—vylpp—-1) P (h —p)!
equivalently if

1

o < [Pl —h -y + A+ DI - 1) [p +(h— p)A]m Yin-pue)(as b)|*? 43)
- (A1 +p)—vylp(p—-1) (h —p)! '
Theorem comes right away from the fact in the equation (4.3) .
EXTREME POINTS Theorem 5.1. Let f_p (z)=z"p an
The theorem below addresses points at the end
of the class E(p,y,A).
fh(z) =P + Z p h — Yy + A(h + 1)]h(h - 1) [p + (h p)/l] Y(h—p,u,e) (asr br) n
(A1 +p)—vlp(p - 1) p (h —p)!
1 1
where (h2p+1,p21,§Sy<1,0</1S§>.
Then a function f(z) belongs to a certain class E(p,y, ) if, and only if, this is true be written as:
F@ =Ly + Y Laful) (5.1)
h=p+1
such that
(L, 20,L, =0,h=p+1)and L, + Z L, =1
h=p+1
proof: Suppose that f(z) thus defined in equation (5.1), then
f(z) = L,zP + Z Ly [zp
h=p+1
[A(1+p) —ylp(p—1) [ ] (h—-pr
[p —h- Y + }\(h + 1)]h(h - 1) p + (h - p)?\ Y‘(h—p,u,e)(as: br)
b Z [ AL +p) —vylp(p -1 [ ] (h—p)! h
=zF 4+ ,ChZ
p h—vy+ Ath + 1)]h(h —1lp+ th-p)A Y'(h—p,u,e) (as; br)

h=p+1
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hence
Z [ A1 +p)—vlp(p—1) [ ] (h—p)!
hSty [p—h—y+Ath+ DJhth—1)Ip+ h—pAl Y_pye(as br)
[[p h—vy+Ath+ D]hth—1) [p +(h— p)k]m Y(h-p,e)(@s, br)
A1 +p)—vylp(p—-1) p (h—p)!

= ) m=1-L=1.
h=p+1
Thus f € B(p,v,7) .
Conversely, suppose that f(z) € E(p,y,A) we may be setting

Z [p h—y+2Ath+ Dlhth— 1) p+ (h — p)A]™ Yh-pue) (@s, br)
Lh - _ ] | ap,
A1 +p) —vlp(p—1) p (h —p)!

where ah is defined in equation (2.1)

o)

then f(z) =zP + Z apz"
h=p+1

N (A1 +p) —ylp(p — 1) p " (h—p)
— 7P h
‘ ﬂl;ﬂ [[p—h—y+z(h+1>]h(h—1) [p+(h—p)a] Vorpmo(as b))
=7+ Y@= = ) Lh@+A= ) L
h=p+1 h=p+1 h=p+1

thus f(z) = LpzP + Xp_piq Lnfn(2)
The proof is all completed now (2.1).

Theorem 6.1.Let the functions f_s (z)belongs to

the class E(p,y,A) such that
CONVOLUTION PROPERTIES

The following theorems explain the properties
of a functions in class E(p,y,A) that make them

convolution.
fi(z) = 2P + Z apsz", (ah,s >0,s= 1,2) (6.1)
h=p+1
Then (f; * f,) € E(p,v,k), where
k

o P =D —h—yl[A+p) - yIPp™(h—=p)+h(h—Dylp—h—y+ @h+ D [p + (h = A"V h-poe)
T (A +phth—=D[p—h-—y+ @Ah+D2[p + (h — P)A"™Yp—pp.e)(as by) — (h + Dpp — D[ + Ap) — y]*p™
This is a very good result for the functions that were f (s=1,2) given by equation (2.2), k € C/{0}.
Proof. we will find the smallest k such that

O [[p —h—y +k(h+ DIh(h— 1) [p + (h — DI Vin-poe)(@s, b))

ap,1apz <1
L kA+p) —ylp(e-1 L 14 ! (h=—pt | ™
=p+1

since f; € E(p,y,A), (s = 1,2),then

[o¢]

[[p—h—y+@Ah+ D]h(th-1)p+ (h— p)/l_m Y(h—p,v,e) (as, by)]
> oo ey | s =1 5=12)

h=p+1 "~
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By Cauhy —Schwarz inequality, we get
> [P =i = v+ Qi+ DIG— 1) P+ G = PN Yg-pue)@s br)
Z v 3j,13j,2
j=p+1

[(1+2p) —ylp(p—1) p (G-p)!

<1, (6.2)
Now, the only thing we need to prove is that:
[[p —h—y+k(h+DJhth—1)p+ (h - p)x]m Y(h_p,v,e><as,br)]
dp,18h,2

[k(1+p)—vlp(p—1) p (h—p)!
[p—h—y+@h+D]h(h—1) [p + (h —p)A " Yih-pu,e) (as, br)]
= [ [(1+p) —ylp(p - 1) p ] (h—pyr | Vn1n2

and equivalently to:
[k(1+p)—yllp—h—y+(@Ah+1)]
Va1t = BT Ty T ke + DI + ) — 7]

from equation (6.2) we have

1
Va2 = T T GRS Dinth— 1) [p T (h— p)x]m Yh-pue) @s by
[((1+2p) —ylp(p— 1) p (h—p)!
This ends well enough to illustrate that
[(1+2p) —vlp(p— 1) p™(h — p)!
[pP—h—y+@h+ DJhth-1)[p+ (h— p))\]my(h—p,v,e) (a5, br)
[k(1+p) —vl[p—h—y+ (Ah + 1)]
T lp—h-y+kth+ DI +2Ap) V]’
[p —h—yI[(1 +2p) — yI*p(p — Dp™(h — p)!+k(h + D[(1 + Ap) — y]*p(p — Dp™(h — p)!
< (Vlp—h-y+ @h+ D]*h(h — D[p + (h — PAI™Y(h-pve)(@s br)
+k(1+p)[p —h—y+ @h+ D]*h(h — D[p + (h — p)AI™Y(h-p,e)(@s, by)
k
p(p — D[p —h—y][(1 +2p) —y]*p™(h —p)! + h(h — Dy[p —h —y + (th + D]*[p + (h = p)A]™Y(h_pve)(@s, br)
“(A+phth-D[p—h—y+ @&h+ D][p+ (h = PA™Y_pye (@s br) — (h+ Dpp — D[(1 + Ap) — y]*p™(h — p)!
Thus, the theorem is established .

then

Theorem 6.2.Let the functions fg(z) in theorem (6.1) belongs of a class E(p, y, A),then a function
f(z) = zP + X541 (af ; + af ,)z" belongs also of a class E(p, v, 1)
wherep(p+ D[1—Ap+D+D+y]-2p(p—D[Ap+1) —y] = 0.
proof: since f;(z) € E(p,y,A), we get
i [[p —h—y+@h+Dlh(h—1) i + (h - p)z]’” Yin-pwe)(@s, br)r 2
[(1+2p) —yIp(p — D) p (h—p)! ot

h=p+1

1 1
where(h2p+1,p21,§Sy<1,0</1S§)

2
o [p—h—y+ @Qh+ D —D[p+ (h—p)A" Yo (ds br)]
- (hz [(1+2p) —vIp(p - 1) p ] h—p)! am) <1 (6.3)

=p+1
and

i [[p —h—y+@h+ DI =D p + (h— p)a]"‘ Yinpwe) (s br)r ,

Y [(1+ ) —ylp(p - 1) p (h—p)! 2
=p+1
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Y‘(h—p,v,e) (as: br)
(h —p)!

Z [ p—h—y+@h+Dh(h—1)p+ (h - P)/l] <1, (6.4)

[((1+Ap) —ylp(p — 1) 4

the mequalltles equation (6.3) and equation (6.4) gives
z [p h — y+(Ah+1)]h(h—1)[p+(h p)/l]
W [(Q+2p) —yIp(p — 1) p
p+1
Accordlng to theorem (2.1), it's enough to show that
Z [p h— y+(Ah+1)]h(h—1)[p+(h p)/’L]
[(1+Ap) —yIp(p — 1) p

Thus, if the last inequality is achieved, ( h=p+1, p+2, p+3, .
[[p—h—y+@h+ DIk — 1) p + (h—p)a]

2
l/‘(h—p,v,e) (asv br) 2 2
(h — p)! (ah’1 + ah,Z) S 1

Y‘(h—p,v,e) (asv br)
(h —p)!

] (ah, +apy) < 1.

Y(h p,v,e) (as: r)

[+ 2p) —vlp(p - D) p (h = p)!
B 1[[19 —h—y+@h+Dlh(h -1 pr p)z] Yn-pue)(@s, b))’
T2 [((1+2p) —vlp(p - D) p (h = p)!

Or, if

[(1+2Ap) —vlp(p— 1) —2h(h—D[p—h—-y+(@h+1)] =0
forh=p+1,p+2,p+3,...
A left-hand side of an equation (6.5) is increasing the function of h, so it is satisfied for all h,
p(p+ DA+ —vy]-2[(1+2p) —ylp(p—1) =0
which is true by our assumption therefor the prove is complete .

(6.5)
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