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Abstract 

cIn this work, another version of the integer sub-decomposition (ISD) method is presented to compute 

a scalar multiplication  on Edwards curves Eds which are defined over prime fields Fp. This version 

depended on applying a 3-dimension of the ISD generators. The elements of these generators are chosen 

randomly from the range [1, p-1], where p is a prime number. In each vector, the elements are relatively 

prime to each other. Using these generators, a scalar k can be decomposed into k1 , k2 and k3 with max

1 2 3{ , , } .t t t n  These scalars are sub-decomposed again into sub-scalars  and t31, t32, t33. The scalar 

multiplication tP using the 3-ISD method is computed using the sub-scalars and the efficiently 

computable endomorphisms of Edwards curve Ed defined over Fp. On the 3-ISD method, fast 

computations are determined based on the randomization choices of the elements that form the 3-ISD 

generators in comparison with the previous version that is depended on the 2-ISD generators. In 

comparison with the 2-ISD computation method to compute  the 3-ISD method considers as more secure 

communications using the Edwards curve cryptography.  

   

Keywords: Elliptic curves, Edwards curves , scalar multiplication , endomorphisms, ISD.  

 

1. INTRODUCTION  

A rich history of elliptic curves motivated many 

mathematician researchers to use them for 

solving some problems. For designing the public 

key cryptosystems. Neal Koblitz and Victor 

Miller in 1985 proposed the usage of elliptic 

curves, which are defined over finite fields. The 

security of the elliptic curve cryptosystems 

depended on the hardness of solving the elliptic 

curve discrete logarithm problem [1].They used 

to solve a various range of mathematical 

problems. Edwards curves are a family of 

elliptic curves which are also used for 

cryptographic schemes. These curves are 

defined on different fields, especially over finite 

fields. They are studied for their mathematical 

properties and they are used for security 

measures as well [2].  

    In 2007, Harold M. Edwards [3] presented a 

normal form  x2 + y2 = a2 + a2x2y2 for elliptic 

curves. That allowed giving the addition law. On 

the elliptic curve also, the j-invariant is defined 

and the transcendental functions x(t) and y(t) 

that parameterize are determined. As well as, In 

2007, Daniel J. Bernstein and Tanja Lange [4] 

presented the inverted Edwards coordinates 

(X:Y:Z) which correspond to an affine point 

(X/Z,Y/Z) on an Edwards curve. On the inverted 

Edwards coordinates, they presented the 

addition, doubling and tripling formulas. These 

formulas are strongly unified even are not 

complete. Also in 2007, Daniel J. Bernstein, 

Tanja Lange, [5] gave the fast formulas for 

Edwards curve group operations. The different 

elliptic curve forms and different coordinate 

systems, an extensive comparison of the 

operations which are doubling, mixed addition, 
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non-mixed addition, and unified addition is 

discussed. As well, a higher-level operation such 

as multi-scalar multiplication is explained. In the 

same year, Daniel J. Bernstein and Tanja Lange 

[6], presented the answers that compared to the 

previous analyses that identified the faster 

scalar-multiplication methods. And which one is 

more optimized that is covered a wide range. 

      In 2008, Daniel J. Bernstein et al. [7] 

generalized the Edwards curves Ed into twisted 

Edwards curves  which are more defined curves 

over finite fields. They also presented the fast 

formulas for  in the projective and inverted 

coordinates. Their study showed the 

computations using the s ave time in comparison 

with elliptic curves. Also, in the same year, 

Daniel J. Bernstein et al. [8] presented an 

addition formula that is defined for all points on 

the binary elliptic curves. Their work also 

introduced the cost of doubling the formula for 

these curves. In 2011, D.J. Bernstein and T. 

Lange [9], presented their study to cover the 

Edwards curves. Two addition laws for points 

P1 and P2 to compute the sum P1 + P2 are 

presented. 

      In 2013, Ruma Ajeena and H. Kamarulhaili 

[10] proposed an approach called the integer 

sub-decomposition (ISD) method for computing 

the scalar multiplication kP on an elliptic curve 

E. This approach uses two fast endomorphisms 

ψ1 and ψ2 of E over prime field Fp. And also 

see other works in 2014 and 2015 [11,12]. Also 

Emilie Menard Barnard [13] in 2015 presented 

a comparison on the Edwards curves, twisted 

Edwards curves  and Montgomery curves. As 

well, this work discussed the application of the 

EdDSA of   

    In 2016, Srinivasa R. S. Rao [14], presented a 

differential addition formula on Generalized 

Edwards’ Curves that is proposed by Justus and 

Loebenberger at IWSEC 2010 [15]. Their work 

introduced an efficient affine differential 

addition formula of a proposed model on the 

Binary Edwards Curves by Wu, Tang, and Feng 

at INDOCRYPT 2012 [16]. A point doubling 

algorithm on TEds is provided with different 

projective coordinates. 

    In 2018, Zhengbing Hu et al. [17] determined 

an increased performance of the elliptic curve 

digital signature algorithms over binary fields. 

Their study showed that the complexity of 

Edwards curves group operations is less than in 

comparing with the elliptic curves. The digital 

signature computations using the Edwards 

curves are performed efficiently and in a more 

secure way.  

    In 2019, Maher Boudabra and Abberrahmane 

Nitaj [18] presented the properties of  on a ring 

Z/nZ, where n = prqs is a prime power RSA 

modulus. They proposed a scheme and 

determined its efficiency and security. In 2020, 

R. Skuratovskii and V. Osadchyy [19], 

constructed a method to count the order of an 

Edwards curve Ed over a finite field. It is 

possible to apply this method to determine the 

order of elliptic curves according to the 

birationality equivalence between them. On the 

Montgomery curve and Ed, a birational 

isomorphism is also constructed in this work. In 

this work, an alternative version of the ISD 

method for computing a scalar multiplication is 

proposed. This version is applied on Edwards 

curves defined over a prime field and uses 3-

dimension of the ISD generators that are 

generated randomly.  The computations using 

the 3-ISD are fast as compare with the original 

one as proposed in [10,11,12] and it considers as 

a more secure way for Edwards curve 

cryptography. 

    The outline of this work consists of Section 2, 

which shows the basic facts on the Edwards 

curves, how to sum two points lie on it and some 

theorems to determine the order of this curve. In 

Section 3, the fuzziness of the DL encryption 

schemes is explained. In section 4, some small 

computational results are discussed. In section 5, 

the security considerations are determined on 

the fuzziness DL encryption schemes. Finally, 

Section 6 draws the conclusions. 

 

II. BASIC FACTS ON THE 

EDWARDS CURVES  

Let   be a prime field with    Suppose   is an 

Edward curve[7] defined over   in the following 

equation: 

2 2 2 2: 1 ,dE x y d x y+ = +   where d ∈ F \ {0, 1}. 

(1)                                                 

Let P = (x1,y1) and Q = (x2,y2) be two points on 

Ed. The summing point P + Q is computed by 
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1 2 2 1 1 2 1 2

1 1 2

1 2 1 2 1 2 1 2

( , ) ( , ) , (2)
1 1

x y x y y y x x
x y x y

d x x y y d x x y y

 + −
+ =  

+ − 
 

For addition point,  the identity point addition is 

a point OE = (0,1). In other words, P + OE = P. 

The inverse point –P of a point P = (x1,y1)  is 

defined by –P = (-x1,y1). Also, there are points 

with some special orders such (0, −1) which has 

order 2 and (1, 0), (−1, 0) possess order 4. The 

point addition formula that is defined in 

Equation (2) is known as strongly unified. The 

reason for that is because of the possibility to use 

it also for computing the double a point. There 

is another attractive point that increases the 

motivation to work with the Edwards curves is 

the completeness of the point addition law when 

d is a non-square in F. This means that the point 

addition law can be computed for all points lie 

on Ed. 

Theorem 1. If p ≡ 3(mod 4) is a prime and the 

following condition of supersingular 
                                                           

        
1

2
2

1

0 2

( ) 0(mod ),

p

j j

p

j

C d p

−

−

=

                     (3)                                                                       

is true then the orders of the curves x2  + y2 =1+ 

dx2y2 and  x2 + y2 = 1 + d-1 x2y2 over Fp are equal 

to                                            

1 , 1,

# ( )

3 , 1,

d p

d
p with

p
E F

d
p with

p

  
+ = −  

  
= 

 
− = 

 

                   (4)                                                                     

where 

d

p

 
 
  is a Legendre symbol, where a 

Legendre symbol is defined by                       
1 mod ,

1 mod ,

0 | .

if d is a quadratic residue ulo p
d

if d is a quadratic nonresidue ulo p
p

if p d


  

= − 
  



                                    

with p be an odd prime [19]. 

Theorem 2. (Properties the order of the Edwards 

curves [19]).  

• If 1,
d

p

 
= 

 
 then the orders #Ed (Fp) 

= #Ed-1 (Fp). 

• If 1
d

p

 
= − 

 
, then Ed and Ed−1 are 

pair of twisted Edwards. In the other 

words, the orders of curves Ed and 

Ed−1 satisfy 

 # Ed (Fp) + # Ed−1 (Fp) = 2p + 2. 

 

III. THE 3-DIMENSION OF THE ISD 

METHOD FOR EDWARDS SCALAR 

MULTIPLICATION 

    Suppose v1, v2   and v3 are vectors that have 

three dimensions that are chosen randomly from 

the range [1, p-1]. The elements that form the 

coordinates on each vector are chosen randomly 

from the range [1, n-1]. Each component on each 

vector is relatively prime to other components in 

the same vector, namely the  gcd (a i, b i, ci) = 1 

in the vector. 

Based on 3-dimensions of the coordinates of the 

vectors that form the first generator, the scalar   

can be decomposed into three scalars k1, k2and 

k3 such that 

1 2 1 3 2 (mod )t t t t n  + +   with max 

1 2 3{ , , } ,t t t n
                      

(6)                                                                                                  

where k1 , k2and k3 are computed by 

1 1 1 2 2 3 3 2 1 1 2 2 3 3,t t d a d a d a t t d b d b d b= − − − = − − −

and
3 1 1 2 2 3 3t d c d c d c= + +  .                         (7) 

  so, the parameters   

1 3 2 2/ , /d b k n d b k n= −  =    and  

3 1 / .d b k n=                                                     

Now, a random selection of nine vectors has 

been done. These vectors are 

' ' ' ' ' ' ' ' ' ' ' '

1 1 1 1 2 2 2 2 3 3 3 3

'' '' '' '' '' '' '' '' '' '' '' ''

1 1 1 1 2 2 2 2 3 3 3 3

( , , ), ( , , ), ( , , ),

( , , ), ( , , ) , ( , , )

v a b c v a b c v a b c

v a b c v a b c v a b c

= = =

= = =
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and
 

''' ''' ''' ''' ''' ''' ''' ''' ''' ''' ''' '''

1 1 1 1 2 2 2 2 3 3 3 3( , , ), ( , , ), ( , , )v a b c v a b c v a b c= = =  

that form the ISD generators 

{v'1,v'2,v'3},{v''1,v''2,v''3}.  and  1 2 3
ˆ ˆ ˆ, , .v v v The 

scalars t1, t2 and t3 will be sub-decomposed 

again into new sub-scalars t11, t12 , t13, t21 , t22, 

t23 and  t31, t32 , t33 respectively. In the other 

words, the scalars t1 , t2 and t3 are written by  

' '

1 11 12 1 13 2 (mod ),t t t t n  + +   

'' ''

2 21 22 1 23 2 (mod )t t t t n  + +  and  
       

3 31 32 1 33 2
ˆ ˆ (mod).t t t t  + +                               

(8)                                                                                                      

where               

' ' ' ' ' '

11 1 1 1 2 2 3 3

' ' ' ' ' '

12 11 1 1 2 2 3 3

' ' ' ' ' '

13 1 1 2 2 3 3

(mod ),

(mod ),

(mod )

t t d a d a d a n

t t d b d b d b n

t d c d c d c n

 − − −

 − − −

 + +

  

21 2 1 1 2 2 3 3

22 21 1 1 2 2 3 3

23 1 1 2 2 3 3

(mod ),

(mod ),

(mod )

t t d a d a d a n

t t d b d b d b n

t d c d c d c n

          − − −

          − − −

          + +

           

(9)                       

and 

31 3 1 1 2 2 3 3

32 31 1 1 2 2 3 3

33 1 1 2 2 3 3

ˆ ˆ ˆˆ ˆ ˆ (mod ),

ˆ ˆ ˆ ˆ ˆ ˆ (mod ),

ˆ ˆ ˆˆ ˆ ˆ (mod )

t t d a d a d a n

t t d b d b d b n

t d c d c d c n

 − − −

 − − −

 + +

          (10) 

with max 11 12 13 21 22 23{ , , } ,{ , , }t t t n t t t n   

and 31 32 33max{ , , } .t t t n  So, the scalar t can 

be written by 

' ' '' ''

11 12 1 13 2 21 22 1 23 2 31

32 1 33 2
ˆ ˆ (mod ).

t t t t t t t t

t t n

   

 

 + + + + + +

+ +
    (11)                                                   

The scalar multiplication tP using the 3-ISD 

method is computed by 

                                                                       

( )

11 12 1 13 2 21 22 1 23 2

31 32 1 33 2

11 21 31 12 1 13 2 22 1

23 2 32 1 33 2

( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

tP t P t P t P t P t P t P

t P t P t P

t t t P t P t P t P

t P t P t P

   

 

  

  

    + + + + +

+ + +

  + + + + + +

 + +

 

where 
' ' ' ' '' '' '' ''

1 1 2 2 1 1 2 2( ) , ( ) , ( ) , ( )P P P P P P P P       = = = =

and ''' ''' ''' '''

1 1 2 2( ) , ( )P P P P   = = are six efficiently 

computable endomorphisms of Edwards curve 

dE defined over Fp. 

 

IV. COMPUTATIONAL results of the 3-

ISD method  

    With a prime number p = 1171,  suppose v1= 

(17, 12, 23), v2= (34, 51, 68) and v3= (85, 68, 17) 

are three vectors are chosen randomly. The 

elements on each vector are relative prime to 

each other. So, the first generator of 3-ISD 

method Is {v1,v2,v3}. Suppose 250 [1,292]k =   

1 3

2 2

/ (68)250 / 293 58,

/ (51)250 / 293 44

d b k n

d b k n

= −  = −  = −

=   =   =
and 

3 1 / (12)250 / 293 10.d b k n=   =  =  

can be decomposed into scalars t1 , t2 and t3 such 

that. 

1 1 1 2 2 3 3

2 1 1 1 2 2 3 3

(mod ) 62(mod 293),

(mod ) 178(mod 293),

t t a d a d a d n

t t b d b d b d n

 − − − 

 − − − 
  

and
 3 1 1 2 2 3 3 (mod ) 70(mod293),t d c d c d c n + +   

where  max 178,62,70 293 17.11.n = =

Now, others nine vectors are chosen randomly 

to  general the 3-IDS generators
' ' ' '' '' ''

1 2 3 1 2 3{ , , },{ , , },v v v v v v and 
1 2 3
ˆ ˆ ˆ{ , , },v v v  where 

 
' ' '

1 2 3

'' '' ''

1 2 3

(14,8,13), (34,51,68), (85,68,17),

(8,29,12), (19,12,18), (55,21,3).

v v v

v v v

= = =

= = =
 

and 
1 2 3
ˆ ˆ ˆ(9,12,17), (19,25,18), (17,43,23)v v v= = =   

Using these generators, one can sub-decompose 

the scalars t1, t2 and t3 into t11, t12 , t13, t21, t22 , 

t23, and t31, t32 , t33 respectively such that 
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1 11

' '

12 1 13 2

'' ''

2 21 22 1 23 2

(mod ) 7 8(265) 14(292)(mod 293),

(mod ) 9 ( 11)(287) 12(292)(mod 293).

t t t t n

t t t t n

 

 

 + +  + +

 + +  + − +
  

and
 

3 31 32 1 33 2
ˆ ˆ (mod ) ( 7) 12(36) 7(292)(mod293).t t t t n  + +  − + +  

Now, a scalar multiplication tP using the 3-ISD 

method is computed by  

where  

( )

11 12 1 13 2 21 22 1 23 2

31 32 1 33 2

11 21 31 12 1 13 2 22 1

23 2 32 1 33 2

( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

tP t P t P t P t P t P t P

t P t P t P

t t t P t P t P t P

t P t P t P

   

 

  

  

    + + + + +

+ + +

  + + + + + +

 + +

 

' ' ' ' '' '' '' ''

1 1 2 2 1 1 2 2( ) , ( ) , ( ) , ( )P P P P P P P P       = = = =

and 
1 1 2 2

ˆ ˆˆ ˆ( ) , ( )P P P P   = = are six efficiently 

computable  endomorphisms that are pre-

computed by 

' '

1 1

' '

2 2

'' ''

1 1

'' ''

2 2

( ) 3(7,766) (230,136),

( ) 65(7,766) (51,1125),

( ) 9(7,766) (391,944),

( ) 65(7,766) (127,296)

P P

P P

P P

P P

 

 

 

 

= = =

= = =

= = =

= = =

 

1 1

2 2

ˆˆ ( ) 36(7,766) (912,581),

ˆˆ ( ) 292(7,766) (1164,766).

P P

P P

 

 

= = =

= = =
 

The computation of 
    

' ' '' ''

11 12 1 13 2 21 22 1 23 2, ( ), ( ), , ( ), ( )t P t P t P t P t P t P     

and 
31 32 1 33 2

ˆ ˆ, ( ), ( )t P t P t P  are 

11

'

12 1

'

13 2

7(7,766) (443,548),

( ) 8(230,136) (1065,148),

( ) 14(51,1125) (12,186)

t p

t p

t p





= =

= =

= =

21

''

22 1

''

23 2

9(7,766) (391,944),

( ) 8(51,1125) (68,238),

( ) 12(1164,766) (724,1027)

t P

t P

t P





= =

= − =

= =

 

and  

31

32 1

33 2

7(7,766) (728,548),

ˆ ( ) 12(912,581) (234,248),

ˆ ( ) 7(1164,766) (728,548)

t P

t P

t P





= − =

= =

= =

 

Then, the ISD scalar multiplication can be 

computed by 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

443,  548 1065,  148 12,  186 391,  944 188,  384

573,  576 728,  548 234,  248 728,  548

   373,  825

tP = + + + + +

+ + +

=

 

Some computational results are seen in Table 

(1). 

TABLE 1. Small experimental results of the 3-ISD method for computing .tP  

p
 

d
 

n '

1  '

2  ''

1  ''

2  
1̂  

2̂  3-ISD generators t 

 

1867 

 

2
 

 

467 

 

85 

 

466 

 

21 

 

466 

 

8 

 

70 

4 5 6

4 5 6

4 5 6

{ (43,57,72), (27,65,39), (37,55,44)},

{ (16,18,17), (13,27,38), (22,17,3)},

ˆ ˆ ˆ{ (22,18,17), (13,31,38), (24,16,5)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

458 

 

2011 

 

2
 

 

503 

 

3 

 

6 

 

3 

 

432 

 

4 

 

457 

4 5 6

4 5 6

4 5 6

{ (15,23,14), (24,16,11), (18,17,9)},

{ (24,55,19), (13,33,32), (28,15,6)},

ˆ ˆ ˆ{ (31,21,36), (18,24,13), (25,15,11)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

463 

 

2083 

 

2 

 

521 

 

1 

 

176 

 

4 

 

64 

 

12 

 

520 

4 5 6

4 5 6

4 5 6

{ (51,19,45), (20,40,11), (23,14,12)},

{ (49,19,47), (20,37,11), (23,14,12)},

ˆ ˆ ˆ{ (44,17,46), (21,49,11), (23,18,19)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

485 
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The original 2-ISD expression to compute  in 

comparison with the proposed version is derived 

based on two dimension of the ISD generators 

{v3, v4} and {v5, v6}, where v3, v4, v5 and v6 

are vectors. These vectors are computed using 

the extended Euclidean algorithm. It can see 

more experimental results of 2-ISD method in 

[12,20]. 

 

V. THE EFFICIENCY AND 

SECURITY CONSIDERATIONS OF 

THE 3-ISD METHOD  

    In comparison with the original two-

dimension integer sub-decomposition (2-ISD) 

method [10,11,12] for computing tP on Ed over 

Fp, the 3-ISD version considers as a fast 

computation method, especially with the 

moderate and large values rather than to the 

previous version that is applied faster with the 

small values. On the other hand, the sub-

decomposition of a scalar t into the form that is 

given in Equation (13), where the sub-scalars 

t11, t12, t21 and t22 which are taken the 

expressions in Equations (11) and (12) are more 

complicated to recover the value of t from their 

sub-decomposition. This sub-decomposition 

needs more and more computations to get the 

correct possibility to determine the correct 

choices of ai, bi and ci, for i =1,2,3, to determine 

the elements of the 3-ISD method that help us to 

recover the values of t11, t12, t13, t21, t22, t23 

and t31, t32, t33.  

     For instance, the probability to find the 

correct value of the element a1 is determined by 

1

# 1
.

# 1
a

the correct value
P

the possible outcomes p
= =

−
 

In the similar way, one needs the probability 1/p-

1 to find a2 as well as the probabilities of a3, b1, 

b2, b3, c1, c2 and c3. So, it is more difficult to 

recover a scalar k from it is sub-decomposition. 

 

VI. CONCLUSIONS 

    This work proposed an alternative version of 

the ISD method, which is the 3-ISD version, for 

computing a scalar multiplication on the 

Edwards curve defined over a prime field. This 

version depended on creating the three 

dimension of the ISD generators 

{v'1,v'2,v'3},{v''1,v''2,v''3}  and  to sub-

decompose a scalar t. The 3-ISD method is used 
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4 5 6
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{ (11,35,23), (16,9,5), (54,17,11)},

{ (13,34,23), (23,9,5), (54,18,15)},

ˆ ˆ ˆ{ (13,34,27), (10,11,7), (58,18,13)}.

v v v

v v v

v v v

  = = =
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1640 

 

P = (x,  y)
 

11t  
12t  

13t  
21t  

22t  
23t  

31t  
23t  

33t  tP  

(3,  317) 8 -14 8 -14 14 4 -17 16 -2 (969, 1049) 

(2004, 750) 19 5 7 8 4 1 13 15 3 (1756, 511) 

(2076,  469) 15 -13 1 1 1 3 -16 11 2 (512, 508) 

(2244,  656)
 

5 -18 4 5 -13 4 4 10 1 (227, 379) 

(22,  108) 5 -31 16 8 13 4 28 3 3 (3974, 2963) 
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to speed up the computations with the moderate 

and large values of the parameters. The security 

is determined based on the complicated 

formulas of t11, t12, t13, t21, t22, t23 and t31, 

t32, t33 that form a scalar t. This scalar is a secret 

key in the Edwards curve cryptosystem that is 

difficult to get k from the sub-decomposition of 

it. Eve here needs to compute many cases to 

determine the elements of the 3-ISD generators 

reach up to p-1, where p is a (large) moderate 

prime number, and to get the correct 

probabilities. So, the 3-ISD method is more 

secure and suitable for Edwards curve 

cryptographic communications. 
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