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Abstract
India has approximately 15 million blind people, and the unfortunate reality is that 75 
percent of these cases are curable. In India, the doctor-patient ratio is 1:10,000. 
According to studies, the leading causes of blindness in India are diabetic retinopathy 
(DR) and glaucoma. Diabetic retinopathy is caused primarily by a person's diabetes 
and is the leading cause of blindness among working-age people in both developed 
and developing countries. Glaucoma damages the optic nerve, resulting in blindness. 
Both diseases are asymptomatic in their early stages, making detection difficult, and if 
left untreated, they can cause irreversible vision damage. Early detection of diabetic 
eye disease using an automated system has significant advantages over manual 
detection as a result of advances in machine learning techniques. A number of 
advanced studies on diabetic eye disease detection have recently been published. 
This paper presents a systematic survey of automated approaches to diabetic eye 
disease detection from a variety of perspectives, including i) available datasets, ii) 
image pre-processing techniques, iii) deep learning models, and iv) performance 
evaluation metrics. The survey provides a comprehensive overview of diabetic eye 
disease detection approaches, including cutting-edge field approaches, with the goal 
of providing valuable insight into research communities, healthcare professionals, and 
diabetic patients.

1. Introduction
Diabetic Eye Disease (DED) is a term used to 
describe a group of eye conditions that include 
Diabetic Retinopathy, Diabetic Macular 
Edema, Glaucoma, and Cataract [1]. In 
patients aged 20 to 74, all types of DED have 
the potential to cause severe vision loss and 
blindness. According to the International 
Diabetes Federation (IDF), approximately 425 
million people worldwide were diagnosed with 
diabetes in 2017. This figure is expected to 
rise to 692 million by 2045 [2].Eyes are the 
most used sensory organ of the human body 
among the five senses. Fig.1 shows the normal 
anatomical structures of the retina. Fig.2 
illustrates a complication of DED in a retina. 
Serious DED begins with an irregular 
development of blood vessels, damage of the 
optic nerve and the formation of hard exudates 
in the macula region.A significant segment of 
the mind is utilized in visual processing.Four 

types of DED threaten eye vision, and they are 
briefly described in the following subsection:
Diabetic Retinopathy (DR) is caused by 
damage to blood vessels of the light sensitive 
tissue (retina) at the back of the eye. The retina 
is responsible for sensing light and sending a 
signal to brain. The brain decodes those 
signals to see the objects around [6]. There are 
two stages of DR: early DR and advanced DR. 
In early DR, new blood vessels do not 
developing (proliferating) and this is generally 
known as non-proliferative diabetic 
retinopathy (NPDR). The walls of the blood 
vessels inside the retina weaken due to NPDR. 
Narrower bulges (microaneurysms) protrude 
from the narrower vessel surfaces, often 
dripping fluid and blood into the eye. Large 
retinal vessels also start dilating and become 
irregular in diameter. As more blood vessels 
become blocked, NPDR progresses from mild 
to severe.Advanced DR is called proliferative 
diabetic retinopathy (PDR). In this case, 
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Pressure can build up in the eyeball because 
the newly grown blood vessels interrupt the 
normal flow of the fluid. This can damage the 
optic nerve that carries images from the eye to 
the brain, leading to glaucoma.
Glaucoma, usually caused by increased 
pressure inside the eye, is the primary root of 
visual loss over the globe and cannot be 
rehabilitated. Detection of glaucoma in its 
beginning is difficult but can be cured [3]. 
Glaucoma analysis is based on the medicinal 
history of the patient’s family, intraocular 
pressure (IOP), retinal nerve fibre layer 
thickness, and changes in optic disc (OD) 

structure, for example, the distance across, 
volume, and region. According to a study, in 
2013 overall 64.3 million people in the 
population aged 40 to 80 years experienced 
glaucoma. This number can be exceeded to 76 
million by 2020 and 111.8 million by 2040 [4]. 
The effects of diabetes can be observed in 
different parts of a person’s body, including 
the retina. Symptoms of glaucoma only occur 
when the disease is slightly advanced; 
glaucoma is called the silent thief of sight. 
Therefore, the timely diagnosis of this disease 
is necessary [5]. 

Fig.1.Anatomical structure of the retina

Diabetic macular edema (DME), defined as a 
retinal thickening involving or approaching the 
center of the macula, represents the most 
common cause of vision loss in patients 
affected by diabetes mellitus. Vascular 
endothelial growth factor (VEGF) is 
overexpressed in diabetic eyes and plays a key 
role in the development of DME. VEGF levels 
were proven to be elevated in the vitreous and 
retina in patients with diabetic retinopathy. 
VEGF causes a breakdown of the blood-retinal 
barrier by influencing the tight junctions of 
retinal endothelial cells and leading to 
accumulation of fluid in the macula. 
Therefore, intravitreal VEGF inhibitors are 
ideal candidates to treat DME by counteracting 
VEGF overexpression.The stages of DME can 
be categorized into mild, moderate and severe 
based on the following points [7]:

∑ Retinal thickening of the fovea at or below 500 
µ or 1/3 of its disc diameter.

∑ Hard exudates, with subsequent retinal 
thickening, at or within 500 µ of the fovea.

∑ Retinal thickening at a size that is greater than 
one disc diameter (1500 µ), and which is 
within one fovea disc diameter.
A cataract is a dense, cloudy area that forms 
in the lens of the eye. A cataract begins when 
proteins in the eye form clumps that prevent 
the lens from sending clear images to the 
retina. The retina works by converting the light 
that comes through the lens into signals. It 
sends the signals to the optic nerve, which 
carries them to the brain. It develops slowly 
and eventually interferes with our vision. We 
might end up with cataracts in both eyes, but 
they usually don’t form at the same time. 
Cataracts are common in older people. Over 
half of people in the United States have 
cataracts or have undergone cataract surgery 
by the time they’re 80 years old, according to 
the National Eye Institute.

https://nei.nih.gov/health/cataract/cataract_facts
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Fig.2.Complications of DED in retina; A. Microaneurysms, narrow bulges (Diabetic Retinopathy), B. 
Optic nerve damage (Glaucoma), C. Exudates with retinal thickening (Diabetic Macular Edema), D. 

Degeneration of lens (Cataract)
1.1. Research Problem

Eye screening is a too long and tiresome 
process because of the keen check-up of each 
individual patient. Manual detection of DED 
involves no computer assistance, resulting in 
longer waiting times between early diagnosis 
and treatment. Moreover, the initial signs of 
DED are so minute that even an expert may 
struggle with its identification. To improve the 
eye screening procedure, a computer aided 
diagnosis system (CADx) can be used to give 
more productive results to the patients to 
distinguish between healthy and infected 
retinal fundus images as it is hard for oculists 
to label this distinction accurately. The
continuous expansion of the patient’s medical 
information, such as fundus images, is creating 
a new challenge in diagnostics, treatment and
surveillance. Manual extraction of features 
from a large volume of fundus images and the 
discovery of beneficial learning information 
from these images results in a loss of time 
between detection and treatment.

1.2. Motivation of the Research Work
Over the last few decades, efforts have been 
made to develop robust computer-based DED 
analytics systems using image processing 
methods and machine learning approaches [8–
10]. Though non-DED and DED binary 
classification using deep learning has achieved 
strong accuracies in validity. Whereas 
nonDED and mild-DED (early stage) binary 
classification as well as multi-stage(mild, 
moderate and severe) classification from 
colour fundus images are still an open problem
[11,12]. We focus our research primarily on 
exploring the research gaps in developing an 
early DED diagnosis (non-DED and mild-
DED) classification system based on deep 
learning, and designing a framework. 
Throughout our literature review it is noted 
that none of the preceding studies address the 

early detection of diabetic eye disease i.e. 
diabetic retinopathy, glaucoma, diabetic 
macular edema and cataract in a single system 
together. Several research studies[13-23] have 
been identified aimed at classifying stages of 
an individual diabetic eye disease i.e normal to 
severe.

1.3. Objectives of the Research Work
In our research study we aimed to develop a 
single classification system for DED in 
Children in a particular stage. It is understood 
that early DED identification with one process 
is a very important aspect. Seeing the lesions 
in a specific area or region of eye anatomy can 
provide specific treatment for the most 
affected target region of the eye.

1.4. Research Challenges
Deep Neural Network model uses advance 
mathematical activity to process pixel value in 
the image where training is performed by 
integrating the network with diverse examples, 
as opposed to solid rule-based programming 
underlying the traditional methodologies. 
Convolutional Neural Network (CNN) has 
been thoroughly explored in the DED domain 
of Deep Learning [13, 15, 16, 18, 24, 25], 
surpassing previous methodologies namely the 
recognition of images. Neural networks seek 
to learn the profound features to identify the 
sophisticated dimension of mild DED. 
Regardless, work on detection of DED using 
deep learning persistently addresses high 
performance in severe cases, while mild 
detection of DED remains an open challenge 
on the other. Our study questions formulated 
as follows on the way to achieving these aims: 
1. How the quality and quantity of the fundus 
images influence the accuracy of the deep 
learning techniques. 
2. How the transfer learning method can be 
effective in detecting the mild DED features 
and improving the accuracy.
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3. How to develop the better, deep learning 
models that will deliver promising DED 
results.
4. Is there any other eye disease and eye 
disease dataset be considered for these 
processes?
1.5. Motivation of the Survey
As mentioned above, DL and TL techniques 
have their advantages and disadvantages 
however; several researchers have used these 
methods to build automatic DED detection 
systems in recent years. Overall, there is very 
few review studies published in academic 
databases which simultaneously address all of 
the types of DED detection. Thus, this 
literature review is essential to collate the 
work in the DED detection field.
Ting et al. [26] published a review article 
focusing on eye conditions such as diabetic 
retinopathy, glaucoma, and age-related 
macular diseases. They selected papers 
published between 2016 and 2018 and 
summarised them in their report. They 
summarized those papers which used fundus 
and optical coherence tomography images, and 
TL methods. Their research did not include 
current (2019-2020) publications that 
incorporated TL methods into their approach, 
and they omitted the identification of eye 
cataract disease from their study scope. 
Similarly, Hogarty et al. [27] provided a 
review of current state articles using AI in 
Ophthalmology, but their focus lacked 
comprehensive AI methodologies. Mookiah et 
al. [28], reviewed computer aided DR 
detection studies, which are largely DR lesion 
based. Another author, Ishtiaq et al. [29], 
reviewed comprehensive DR detection 
methods from 2013 to 2018 but their review 
lacked studies from 2019 to 2020. Hagiwara et 
al. [30] reviewed an article for the computer 
aided diagnosis of Gl using fundus images. 
They addressed computer aided systems and 
systems focused on optical disc segmentation. 
There are a variety of studies using DL and TL 
methods for Gl detection that have not 
discussed in their review paper. It is, therefore, 
important to review papers that consider 
existing approaches to DED diagnostics. In 
fact, most scholars in their review article did 
not address the period of publication years 
covered by their studies. Current reviews were 
too narrow, either in terms of disease (DR, Gl, 
DME and Ca) or in aspects of methodology 
(DL and ML). Therefore, to address the 

limitations of the abovementioned studies, this 
paper offers a thorough analysis of both DL 
and TL approaches to automated DED 
detection published between 2014 and 2020 to 
cover the current DR detection methods built 
through DL or TL based approaches.
Diabetic eye disease leads to blindness and its 
prevalence is set to rise continuously. Group of 
DED damage eye retina at its various parts. 
Severe DED is the main cause of blindness 
among adults aged 20-70 years. Glaucoma is 
the main leading cause in the group of DED 
which causes irreversible blindness. Diabetic 
retinopathy (DR) can be classified as non-
proliferative DR (NPDR) and proliferative DR 
(PDR). Specific DR Features can define the 
different stages. The following are the three 
subclasses of NPDR as well as PDR. Mild 
NPDR, Moderate NPDR, Severe NPDR, and 
PDR [31].Gulshan et al.[32] proposed a DL 
algorithm for detection of DR. They yielded a 
result in two validation set of 1748 and 9963 
images. The algorithm had the sensitivity of 
90.3% and 87.0% and 98.1% and specificity of 
98.5% respectively. 
Vahadane et al.[33] proposed a system to 
detected DME in optical coherence 
tomography scans using deep convolutional 
neural network (CNN). Their method achieved 
96.43% of precision, 89.45% of recall and 
0.9281 of F1-score. Prentasic et al. [34] 
present a fusion based on CNN and landmark 
detection for detection of exudates. They 
obtained 0.78 F1 measure. Otalora et al. [35] 
introduces a CNN model with a label efficient 
which uses gradient length. Automated 
segmentation of exudates and other features 
using ten layers of CNN employed by Tan et 
al. [36]. Their system used 149 images for 
training and another 149 images for testing 
which yielded 0.8758 and 0.7158 of sensitivity 
for exudates and dark lesions. 
Chai et al. [37] in their work the used DL 
model with retinal images for automatic 
diagnosis of glaucoma. They used Multi-
branch neural network (MB-NN) model to 
obtain the features. The achieved the 0.9151 of 
accuracy, 0.9233 of sensitivity and 0.9090 of 
specificity. Li et al. [38] developed a DL 
method for detecting non-glaucoma and 
glaucoma based on visual fields (VFs). Their 
CNN based algorithm achieved 0.876 of
accuracy, 0.826 of specificity and 0.932 
sensitivity. Raghavendra et al. [31] proposed 
an 18 layers CNN framework for glaucoma 
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diagnosis. They evaluated their model with 
589 normal and 837 glaucoma images, in 
which the obtained 98.13% of accuracy, 98% 
of sensitivity and 98.3% of specificity.
1.6. Contribution
To provide a structured and comprehensive 
overview of the state of the art in DED 
detection systems using DL, the proposed 
paper surveys the literature from the following 
perspectives:
(1) Datasets available for DED.
(2) Pre-processing techniques applied to 
fundus images for DED detection.
(3) DL approaches proposed for DED 
detection.
(4) Performance measures for DED detection 
algorithm evaluation. 
The arrangement of this article is as follows. 
Section 2 analyses the papers based on the 
datasets used in their study. Section 3
addresses the image processing techniques 
used in the prior work. Section 4 analyses the 
articles based on the classification methods 
employed. Section 5 discusses the 
performance metrics employed. Finally, 
Section 6concludes the paper.
2. Diabetic Eye Disease Datasets

For this study [39], images were acquired from 
publicly available datasets. Messidor and 
Kaggle data set were used to acquire DR 
images. Both the data set contains labelled 
colour fundus images of DR. Authors such as 
Franklin et al. [40], Gargeya et al. [41] and 
Ghosh et al. [42] have used kaggle and 
messidor dataset. Similarly, colour fundus 
images of Gl were obtained from (RIGA) 
retinal fundus images for glaucoma analysis 
data set[43]. RIGA data set is composed of 
three different sources (i) Messidor, (ii) Bin 
Rushed and (iii) Margrabi Eye centre. Al 
Ghamdi et al. [44] have used RIGA dataset in 
their study. Finally, fundus images for DME 
were acquired from Hamilton Eye Institute 
Macular Edema Data set (HEIMED). Authors 
in Li et al. [45] used HEI-MED data set in 
their study. Data set information and their 
respective link is shown in Table 1. 
Unfortunately, cataract data set are not 
publicly available. Authors namely Zhang et 
al. in [46] mention that they collected cataract 
data set from Beijing Tongren Eye Center of 
Beijing Tongren Hospital. These images were 
graded into four classes; normal, mild, 
moderate and severe. This data set is not 
publicly available.

Table 1.Datasets available for automatic Diabetes Eye Detection with source (link)

DED Dataset Description Link

Other 
References who 
used these 
datasets

DR

Kaggle

This Data-set consists of 
35,126 training images and 
53,576 testing images. In 
total 88,702 images. The 
images in data set are label 
with DR stages

https://www.kaggl
e.com/c/ diabetic-
retinopathy-
detection/ data

[47]–[52], [53], 
[54], [55], [56]–
[62], [63], [64], 
[65]

Messidor

This data-set contain 1200 
fundus images in total. These 
images were obtained by 
three ophthalmological 
branch in France. This data 
set contain labeled DR stages

https://www.adcis.
net/ en/Download-
Third-Party/ 
Messidor.html

[52], [66], [67], 
[68], [69], [65], 
[70], [71]

Gl. RIGA

This data-set contains images 
from three different sources; 
1)Messidor: This dataset 
consist of 460 original 
images and 460 images were 
marked manually by six 
different ophthalmologist. 
Therefore, total of 3220 
marked images. 2)Bin 

https://deepblue.lib
. 
umich.edu/data/co
ncern/ 
data_sets/3b59190
5z? locale=en

[72]
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Rushed: This data-set 
contains 195 original images 
and 195 images were marked 
by six different 
ophthalmologist. Thus in 
total of 1365 images. 
3)Magrabi Eyecenter: This 
data-set contains 95 original 
images and 95 images 
marked by six different 
ophthalmologist. These data-
set contain 665 images in 
total

DME HEIM

This data-set is obtain from 
Hamilton Eye Institute 
Macular Edema Data-set 
(HEIMED) This data-set 
contains 169 testing and 
training images which can be 
used for the detection of 
exudates and DME.

https://github.com/ 
lgiancaUTH/HEI-
MED

[52]

Ca

Picture 
Archiving and 
Communication 
System (PACS)

In this dataset each fundus 
image is manually graded by 
the ophthalmologist as non, 
mild, moderate, or severe 
cataract. There are 767 
noncataractous, 246 mild, 
128 moderate and 98 severe 
images (total of 1,239).

Publicly 
unavailable.

[73].

Legend: DED = Diabetic Eye Disease, Gl = Glaucoma, DME = Diabetic Macular Edema, Ca = 
Cataract
3. Image Preprocessing Techniques in 
Selected Articles 
Images are subjected to numerous image pre-
processing steps for visualization 
enhancement. Once the images are brighter 
and clearer, a network can extract more salient 
and unique features. A brief description of the 
pre-processing techniques used by the 
researchers addressed in this section. Green 
channel on the RGB color space provides a 
better contrast when compared to the other 
channels. In most of the image pre-processing 
techniques, green channel extraction is 
employed. The green channel image produces 
more information than blue and red channels.
For instance, Li et al. [52] extracted the green 
channel of the image for exudates detection, 
where the exudates reveal better contrast from 
the background. Another popular imagepre-
processing technique is contrast enhancement. 
The application of contrast enhancement 
further improves the contrast on a green 
channel image. To improve the contrast of the 

image, contrast enhancement is employed to 
the green channel of the image. 
For example, again Li et al. [52] have 
enhanced the contrast on the extracted green 
channel by employing the Contrast Limited 
Adaptive Histogram Equalization (CLAHE) 
method. This enhances the visibility of 
exudates of a green channel image. Normally, 
after contrast enhancement, illumination 
correction is implemented to improve the 
luminance and brightness of the image. A 
noise removal filter like Gaussian Filtering is 
then applied to smooth out the image. The 
resizing of an image is another popular method 
of image pre-processing. The image is scaled 
down to a low resolution image according to 
the appropriate system.
Li et al. [52] resized their images with various 
sizes to the same pixel resolution of 512 × 512. 
Similarly, X. Li [66] resized their image to 
224×224 pixel resolution, for all the pre-
trained CNN models that used 224×224 size 
resolution images. The resolution of an image 
is resized into the resolution required by the 
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network in use. Researchers often have to 
eradicate and mask the blood vessels and 
optical discs so that they are not classified as 
wrong DED lesions. Many DED datasets 
consist of images with a black border, with 
researchers generally preferring to segment the 
meaningless black border to focus on the 
region of interest (ROI). 
For example, Li et al. [52] removed the black 
border of fundus images using the thresholding 
method to further focus on the Region of
Interest (ROI). Image augmentation is applied 
when there is an image imbalance (as typically 
observed in real world settings). Images are 
mirrored, rotated, resized and cropped to 
produce cases of the selected images for a 
class where the number of images is lower 
than the other large proportion of healthy 

retina images in comparison with DED retina 
images. Augmentation is a common strategy 
for enhancing outcomes and preventing 
overfitting. It is observed that the distribution 
of the Kaggle dataset is uneven. 
The Kaggle dataset includes 35,126 fundus 
images annotated as No DR (25810), Mild DR 
(2443), Moderate DR(5292), Severe DR(873) 
and Proliferative DR(708). Thus, Li et al. [52], 
An et al. [74], Nguyen et al. [55], Xu et al. 
[61], Pires et al. [64], Gargeya et al. [75], 
Ghosh et al. [58], Van et al. [76], Quellec et al. 
[50] used the Kaggle dataset and the adopted 
augmentation technique to balance the dataset. 
Sometimes the RGB image is transformed into 
a greyscale image accompanied by further 
processing. Grayscale conversion is mostly 
used in approaches where ML is used.

Table 2. Image pre-processing techniques employed in selected studies

GCE HE ROI CLAHE CE Re Au GSC BVS IR IC GF References

✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Li et al. 
[52]

✓

X. Li et al. 
[66], Al-
Bander et 
al. [77]

✓ ✓ ✓ ✓
Zhang et al. 
[79]

✓
Ran et al. 
[78]

✓ ✓ ✓ ✓
Shaharumet 
al. [80]

✓ ✓ ✓
Gondal et 
al. [81]

✓ ✓ ✓
Mansour et 
al. [82]

✓ ✓ ✓
Yang et al. 
[62]

✓ ✓ ✓
Pires et al. 
[64]

✓ ✓ ✓ ✓
Orlando et 
al. [70]

✓ ✓ ✓ ✓
Dong et al. 
[83]

4. DNN Classification Models
DNN’s classification of normal / severe DED 
has already shown some promising results but 
normal / mild are still an open challenge. 
Bearing in mind the problem of overfitting, 
one solution could be to increase 
computational power by increasing the size of 
the network. Another approach might be 

object centred recognition such as blood 
vessels, optic discs, and macular field. Object-
oriented detection is more powerful than all 
image based detection. 
4.1. Statement of Significance
Our preliminary work on early detection of 
DEDs will also have a clear practical 
significance, as will academic participation. 
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There have been numerous academic research 
conducted to diagnose different stages of 
diabetic retinopathy (normal, NPDR and PDR) 
using deep learning methods [13, 15, 84]. 
Similarly, other researchers have identified 
various stages (normal to severe) of glaucoma 
using deep learning techniques [17–20]. Deep 
learning has also been used to diagnose signs 
of diabetic macular edema and cataracts [21–
23]. Our work aims at examining, classifying 
and detecting all forms of DEDs in children in 
one method. In addition, we plan to develop a 
system that will detect the early stage of all 
types of DED.
4.2. DL Approaches Employing New Network 
An alternative to TL is the new network 
development by the researchers. Out of 65 
studies, 21 of them have designed their DL 
architectures for automated detection of DED. 
This section presents the list of studies, where 
the researchers have employed their own built 
DL models with the classifier indicated, 
number of layers, model used and results 
obtained. 
Diabetic RetinopathyDoshi et al. [85] detected 
the severity of diabetic retinopathy using the 
29 layers CNN model and detected five stages 
of DR, and three CNN achieved Accuracy
(Acc) of 39.96% on kappa matrix. Gargeya et 
al. [86] identified diabetic retinopathy using 
the DL approach. They achieved Accuracy of 
94%, specificity of 87% and sensitivity of 
93%. Ghosh et al. [58] employed a 28 layers 
CNN for two and five class classification of 
diabetic retinopathy. Using Softmax they 
achieved an Acc of 95% for two class and 
85% of Acc for five class classification.Xu et 
al. [61] employed a 16 layer model for early 
detection of DR. 
Using Softmax classifier they achieved an Acc 
of 94.50%. Yang et al. [62] employed local 
and global CNN architectures. Local CNN (10 
layers) was used for lesion detection and the 
global CNN (26 layers) for grading DR. The 
authors achieved an Acc of 0.9687, specificity 
of 89.80% and sensitivity of 95.90%. Yu et al. 
[87] detected exudates using 16 layers CNN. 
With the Softmax classifier, they achieved an 
Acc of 91.92%, specificity of 96% and 
sensitivity of 88.85%. Torre et al. [63] used 17 
layered CNN architecture obtaining specificity 
of 90.8% and sensitivity of 91.1%. Pires et al. 
[64] proposed 16 layer CNN architecture. 

They used Messidor-2 and DR2 dataset to test 
the model. With the neural networks classifier, 
they achieved Acc of 96.3% in the DR2 
dataset and Acc of 98.2% in Messidor-2 and 
with the Random Forests classifier, they
achieved Acc of 96.1% in DR2 dataset and 
Acc of 97.9% in Messidor-2.
Glaucoma Chen et al. [88] developed six layer 
CNN model. With the Softmax classifier they 
achieved an Accof 83.1% and 88.7% in 
ORIGA [90] and SCES datasets. Raghavendra 
et al. [89] build an eighteen layer CNN 
framework to diagnose Gl using 1426 fundus 
images in where 589 were normal and 937 
were with glaucoma. They achieved an Acc of 
98.13%, sensitivity of 98% and specificity of 
98.3%. Abhishek et al. [91] introduced a novel 
multi-model DL network named G-EyeNet for 
glaucoma detection using DRIONS [93] and 
Drishti-GS [92] datasets. Their experimental 
findings revealed an Acc of 92.3%.
Diabetic Macular Edema Al-Bander et al. 
[77] proposed a CNN system to grade the 
severity of DME using fundus images using 
the MESSIDOR [94] dataset of 1200images. 
They obtained an Acc of 88.8%, sensitivity of 
74.7% and specificity of 96.5% respectively. 
Prentavsic et al. [95] introduced a novel 
supervised CNN based exudate detection 
method using the DRiDB dataset [96]. The 
proposed network consists of 10 alternating 
convolutional and max-pooling layers. They 
achieved sensitivity of 78%, Positive 
Predictive Value (PPV) of 78% and FSc of
78% respectively. Tan et al. [98] used the 
CLEOPATRA [97] image dataset. They 
obtained sensitivity of 87.58% and specificity 
of 98.73% respectively. 
Cataract Zhang et al. [79] proposed eight 
layers of DCNN architecture. With the 
Softmax classifier, they achieved an Acc of 
93.52% and 86.69%. Dong et al. [83] used a 
Softmax classifier with five layer CNN 
architecture and achieved an Acc of 94.07% 
and 81.91%, respectively.
4.3. Approaches Employing Combined Dl 
and Ml
Table 3 shows the studies in which the authors 
applied a combination of DL and ML 
classifiers namely: Random Forest (RF), 
Support Vector Machine(SVM) and Back 
propagation Neural Network (BPNN) based 
architectures for DED detection.
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Table 3. Studies employing combined DL and ML for automatic DED detection

DED Models Layers Features References Classifier Results

DR

CNN 3
DColor-
SIFT, GLOH

[65]

Softmax
AUC = 92.4%, 
SE = 92.18%, SP 
= 94.50%

CNN 10
Shape, 
Intensity

[70] RF
AUC = 93.47%, 
SE = 97.21%

DBN 3
Shape, 
Intensity

[99] SVM
ACC = 96.73%, 
SE = 79.32%, SP 
= 97.89%

Gl CNN 23 - [77] RF
ACC = 88.2%, 
SE = 85%, SP = 
90.8%

Ca

DCNN 17
Shallow, 
residual, 
pooling

[78] RF ACC = 90.69%

CNN 2
Wavelet, 
Sketch, 
Texture

[73]
SVM, 
BPNN

ACC = 93.2%, 
84.5%

Legend: CNN = Convolutional Neural Network, DBN = Deep Belief Network, RF = Random Forests, 
SVM = Support Vector Machine, BPNN = Backpropagation Neural Network, SE = Sensitivity, SP = 
Specificity, AUC = Area Under Curve, Acc = Accuracy, DColor-SIFT = Dense Color Scale-Invariant 
Feature Transform, GLOH = Gradient Location Orientation Histogram.
5. Analysis and Review of Performance 
Evaluation Metrics 
Detailed description of performance measures, 
namely: specificity, sensitivity, accuracy, area 
under curve (AUC), precision, f-score, and 
positive predictive value can be found in 
[100]. Likewise, Kappa Score, PABAK Index
discussions can be found in [101], 
respectively. In the majority of listed academic 
papers, the authors used specificity, sensitivity, 
accuracy and AUC as their assessment metrics 
to evaluate the efficiency of the classifier. The 
combined effect of performance metrics found 
to be used frequently was Sensitivity, 
Specificity and Accuracy. Instead of 
Sensitivity, some researchers used Recall. We 
accommodated Recall under Sensitivity, rather 
than using it as another success indicator.
6. Conclusion
This review paper provides a comprehensive 
overview of the state of the art on Diabetic 
Eye Disease (DED) detection methods. To 
achieve this goal, a rigorous systematic review 
of relevant publications was conducted. After 
the final selection of relevant records, 
following the inclusion criteria and quality 
assessment, the studies have been analyzed 
from the perspectives of 1) Datasets used, 2) 
Image pre-processing techniques adopted and 

3) Classification method employed. The works 
were categorized into the specific DED types, 
i.e.DR, Gl, DME and Ca for clarity and 
comparison. . In this analysis, many publicly 
available DED datasets have been explored 
and published. Such as, Kaggle, Messidor, 
RIGA and HEI-MED dataset were most 
widely used for the identification of diabetic 
eye diseases. In this study we addressed the 
weakness of the publicly available data set and 
how image pre-processing techniques can be 
used to fix it. Techniques such as extraction of 
green channels and enhancement of contrasts 
using CLAHE have produced better contrast. 
To prevent over-fitting and neutralize the data 
disparity, data augmentation was used. To 
create robust early DED detection system ROI 
like blood vessels, optic disc and macular 
region was also been extracted. In deep 
learning, convolutional neural network 
architecture is considered to be the most used 
classification method for the detection of 
disease using medical images.
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