# Legal Factors Affecting The Efficiency Of State Management Of The Digital Economy

## M.Ya. Isokhuzhaeva<sup>1</sup>, Mirisev A.A.<sup>2</sup>, I.O. Karimov<sup>3</sup>, S.O. Ibragimov<sup>4</sup>

<sup>1</sup>*Ph.D.*, Associate Professor Department of "Economics and Real Estate Management" of the Tashkent Architecture and Construction Institute.

<sup>2</sup>*Ph.D., Associate Professor Department of "Economics and Real Estate Management" of the Tashkent Architecture and Construction Institute.* 

<sup>3</sup>*Ph.D.*, Associate Professor Department of Economics and Real Estate Management, Tashkent Institute of Architecture and Construction.

<sup>4</sup>*Ph.D., Associate Professor Department of "Economics and Real Estate Management" of the Tashkent Architecture and Construction Institute.* 

**Abstract:** In the context of the transition to a digital economy, the issues of public administration efficiency become relevant, due to the need to ensure the implementation of state policy aimed at the efficient use of budgetary, labor, material and technical and information resources, a fair redistribution of income and guaranteeing basic social rights, maintaining public order.

**Keywords:** economy management, social rights, public administration, correlation-regression, criminal justice.

### Introduction

In turn, the digitalization of public administration will lead to an increase in labor productivity, an improvement in the quality of service and a decrease in the cost of services, an increase in the efficiency of the use of investments and efficiency in making managerial decisions [7].

The purpose of the study was to identify legal factors that affect the quality of digital economy management, to develop correlationregression models for predicting effective management in a virtual environment.

For the purposes of analyzing the legal factors affecting the quality of public administration in the context of the transition to a digital economy in the Republic of Uzbekistan, we will conduct an econometric analysis, where we will take Government Effectiveness as an effective factor, the characteristic factors are presented in Table 1.

| Designation | <b>Factor</b> Variable                               |                        |  |
|-------------|------------------------------------------------------|------------------------|--|
| У           | Government performance Government Effectiveness      |                        |  |
| x1          | Quality of regulation/quality of legislation         | Regulatory quality     |  |
| x2          | Open government (order and security) Open Government |                        |  |
| x3          | Compliance with laws                                 | Regulatory Enforcement |  |
| x4          | criminal justice                                     | Criminal justice       |  |
| x5          | civil justice                                        | Civil justice          |  |
| x6          | Absence of Corruption                                | Absence of Corruption  |  |

Table 1. Description of variables (Compiled by the author)

The correlation matrix (Table 2) contains the pair correlation coefficients for all features used in the model. Coefficients tested for statistical significance. The analysis revealed dependencies: a strong degree of direct linear relationship between government performance and the absence of corruption (r=0.78) and an almost linear (very strong direct) relationship

between government performance and criminal justice (r=0.82). There is a moderate inverse

relationship between government efficiency and openness (r = -0.60).

|    | Y      | X6     | X5     | X4     | X3     | X2     | X1     |
|----|--------|--------|--------|--------|--------|--------|--------|
| Y  | 1.000  | 0.777  | 0.487  | 0.820  | -0.361 | -0.601 | 0.678  |
| X6 | 0.777  | 1.000  | 0.550  | 0.653  | -0.463 | -0.463 | 0.807  |
| X5 | 0.487  | 0.550  | 1.000  | 0.137  | -0.522 | -0.327 | 0.575  |
| X4 | 0.820  | 0.653  | 0.137  | 1.000  | -0.443 | -0.812 | 0.530  |
| X3 | -0.361 | -0.463 | -0.522 | -0.443 | 1.000  | 0.509  | -0.366 |
| X2 | -0.601 | -0.463 | -0.327 | -0.812 | 0.509  | 1.000  | -0.619 |
| X1 | 0.678  | 0.807  | 0.575  | 0.533  | -0.366 | -0.619 | 1.000  |

| Table 2 Correlation matrix | (Compiled | by the author) |
|----------------------------|-----------|----------------|
|----------------------------|-----------|----------------|

Based on the data described in Table 1, we will build a multiple regression linear model (Table 3).

Table 3 Multiple regression metrics (Compiled by the author)

| Variable           | Coefficient | Std. Error                 | t-Statistic | Prob.     |
|--------------------|-------------|----------------------------|-------------|-----------|
| X6                 | -2.493609   | 0.873994                   | -2.853120   | 0.0462    |
| X5                 | 7.157531    | 1.235005                   | 5.795548    | 0.0044    |
| X4                 | 6.696427    | 0.912419                   | 7.339202    | 0.0018    |
| X3                 | 1.633953    | 0.957185                   | 1.707040    | 0.1630    |
| X2                 | 4.605576    | 1.022159                   | 4.505735    | 0.0108    |
| X1                 | 0.270724    | 0.088190                   | 3.069789    | 0.0373    |
| С                  | -8.050115   | 1.077094                   | -7.473919   | 0.0017    |
| R-squared          | 0.979962    | Mean dependent var         |             | -0.636950 |
| Adjusted R-squared | 0.949905    | S.D. dependent var 0.1     |             | 0.150226  |
| S.E. of regression | 0.033623    | Akaike info criterion -3.6 |             | -3.686062 |
| Sum squared resid  | 0.004522    | Schwarz criterion -3.43    |             | -3.432856 |
| Log likelihood     | 27.27334    | Hannan-Quinn criter3.845   |             | -3.845673 |
| F-statistic        | 32.60365    | Durbin-V                   | Vatson stat | 3.033145  |
| Prob(F-statistic)  | 0.002345    |                            |             |           |

Coefficient determination R^2=0.98 shows that the post is a functional connection factor. Criterion Fisher F\_( observation.) = 32.60, [[F]] \_( criterion.) = 8.94. According to the Fisher criterion, this model is adequate. The probability of accepting the null hypothesis H<sub>0</sub> for all models and the whole is 0.002, which proves the necessity of accepting the alternative hypothesis and the significant model of the whole.

Tabular value of the Student's criterion, corresponding to the confidence probability  $\gamma = 0.95$  and the number of degrees of freedom v = n - m - 1 = 11 - 6 - 1 = 4;  $t_{\text{крит}} = t_{0.05;4} = 2.78$ . Comparing the calculated t-statistics of the coefficients of the equation with the table value, we conclude that all the

coefficients for the variables of the regression equation (except x3), as well as the free term, are statistically significant. It should be added that the probability of accepting the null hypothesis for the coefficients for most variables takes a value below 0.05, which confirms the high quality of the constructed model.

The tabular value of the Student's criterion associated with the confidence probability  $\Box = 0.95$  and realized degrees of freedom v = n - m - 1 = 11-6-1=4; t\_crit=t\_(0.05;4)= 2.78. Comparative calculated t-statistics of the coefficients of the equation with a tabular value concluded that all coefficients when using regression coefficients (except x3), as well as the intercept, are significant. It has been

added that it is supposed to implement the possibility of a null hypothesis for the coefficients with a maximum use of values below 0.05, which is the maximum quality of the constructed model. The approximation error is an acceptable value (less than 15%):

$$\overline{A} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left| \frac{y - \hat{y}}{y} \right| \cdot 100 \% = 3,0469\%$$
(1)

Check the residuals for autocorrelation. To do this, we write out the value of the Durbin-Watson statistics from Table 3: DW = 3.033. Using special tables, we determine the significant points dl and du for the 5% significance level. For

m = 6 and n = 11: dl=0.203; du=0.405. Since du $\leq$ DW  $\leq$ 4-du, then, therefore, there are reasons to believe that there is no autocorrelation.

Let's check for autocorrelation using the Breusch-Godfrey test. It is based on the following idea: if there is a correlation between neighboring observations, then it is natural to expect that in the equation:

$$e_t = \rho \times e_{t-1}, \quad t = 1, ..., n \end{tabular} \end{tabular}$$

где  $e_t$  - regression residuals obtained by the ordinary least squares method), the coefficient  $\rho$  will be significantly different from zero.

The results of the Breusch-Godfrey test are presented in Table 4.

 Table 4 Breusch-Godfrey Serial Correlation LM Test (Compiled by the author)

|                    | · <b>·</b> · · · · · · · · · · · · · · · · · |                       |             |           |
|--------------------|----------------------------------------------|-----------------------|-------------|-----------|
| Variable           | Coefficient                                  | Std. Error            | t-Statistic | Prob.     |
| X6                 | -0.993381                                    | 0.629539              | -1.577950   | 0.2127    |
| X5                 | -0.044373                                    | 0.740887              | -0.059891   | 0.9560    |
| X4                 | 0.779943                                     | 0.611879              | 1.274668    | 0.2922    |
| X3                 | -0.433389                                    | 0.593900              | -0.729734   | 0.5184    |
| X2                 | 0.771160                                     | 0.670141              | 1.150744    | 0.3332    |
| X1                 | 0.077845                                     | 0.059532              | 1.307605    | 0.2822    |
| С                  | 0.078433                                     | 0.646599              | 0.121302    | 0.9111    |
| RESID(-1)          | -1.211338                                    | 0.425109              | -2.849475   | 0.0651    |
| R-squared          | 0.730204                                     | Mean dependent var    |             | 1.13E-15  |
| Adjusted R-squared | 0.100680                                     | S.D. dependent var    |             | 0.021265  |
| S.E. of regression | 0.020166                                     | Akaike info criterion |             | -4.814333 |
| Sum squared resid  | 0.001220                                     | Schwarz criterion     |             | -4.524954 |
| Log likelihood     | 34.47883                                     | Hannan-Quinn criter.  |             | -4.996745 |
| F-statistic        | 1.159930                                     | Durbin-Wa             | tson stat   | 2.858313  |
| Prob(F-statistic)  | 0.496129                                     |                       |             |           |
|                    |                                              |                       |             |           |

The results of the Breusch-Godfrey test indicate that the probability of accepting the null hypothesis of the absence of autocorrelation is Prob=0.496 and, therefore, there is no autocorrelation in the model.

Let us establish the presence (absence) of heteroscedasticity of random deviations of the model using the Glaser test for this (see Table 5).

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| С        | -0.358867   | 0.419153   | -0.856171   | 0.4402 |
| X6       | 0.079959    | 0.340116   | 0.235092    | 0.8257 |
| X5       | 0.360893    | 0.480604   | 0.750914    | 0.4945 |
| X4       | 0.086766    | 0.355069   | 0.244363    | 0.8190 |
| X3       | 0.288366    | 0.372490   | 0.774158    | 0.4820 |
| X2       | -0.012889   | 0.397775   | -0.032402   | 0.9757 |

| X1                 | -0.005292 | 0.034319                | -0.154208  | 0.8849    |
|--------------------|-----------|-------------------------|------------|-----------|
| R-squared          | 0.385554  | Mean depe               | endent var | 0.017601  |
| Adjusted R-squared | -0.536114 | S.D. dependent var 0.0  |            | 0.010557  |
| S.E. of regression | 0.013085  | Akaike info criterion   |            | -5.573634 |
| Sum squared resid  | 0.000685  | Schwarz criterion -5.   |            | -5.320428 |
| Log likelihood     | 37.65499  | Hannan-Quinn criter5.73 |            | -5.733245 |
| F-statistic        | 0.418322  | Durbin-Watson stat 2    |            | 2.669576  |
| Prob(F-statistic)  | 0.837038  |                         |            |           |

The Glaser test showed that, in accordance with the data obtained for the model as a whole, the probability of accepting the null hypothesis is above 5%, which indicates the absence of heteroscedasticity. Let us check the constructed model for heteroscedaticity of residuals using the Breusch-Pagan test (see Table 6).

Table 6 Heteroskedasticity Test: Breusch-Pagan-Godfrey (Compiled by the author)

| ······································ | 8           |                                | , , , , , , , , , , , , , , , , , , , |           |
|----------------------------------------|-------------|--------------------------------|---------------------------------------|-----------|
| Variable                               | Coefficient | Std. Error                     | t-Statistic                           | Prob.     |
| С                                      | -0.011938   | 0.019612                       | -0.608711                             | 0.5756    |
| X6                                     | 0.002094    | 0.015914                       | 0.131584                              | 0.9017    |
| X5                                     | 0.011013    | 0.022488                       | 0.489745                              | 0.6500    |
| X4                                     | 0.005044    | 0.016614                       | 0.303610                              | 0.7766    |
| X3                                     | 0.007638    | 0.017429                       | 0.438253                              | 0.6838    |
| X2                                     | 0.002241    | 0.018612                       | 0.120388                              | 0.9100    |
| X1                                     | 0.000113    | 0.001606                       | 0.070465                              | 0.9472    |
| R-squared                              | 0.330401    | Mean dependent var             |                                       | 0.000411  |
| Adjusted R-squared                     | -0.673998   | S.D. dependent var             |                                       | 0.000473  |
| S.E. of regression                     | 0.000612    | 0.000612 Akaike info criterion |                                       | -11.69778 |
| Sum squared resid                      | 1.50E-06    | Schwarz criterion              |                                       | -11.44458 |
| Log likelihood                         | 71.33782    | Hannan-Quinn criter.           |                                       | -11.85740 |
| F-statistic                            | 0.328954    | Durbin-W                       | atson stat                            | 2.703683  |
| Prob(F-statistic)                      | 0.891478    |                                |                                       |           |

(5)

The Breusch-Pagan test showed that the probability of accepting the null hypothesis for the whole model is above 5% and, therefore, we can accept an alternative hypothesis about the absence of heteroscedasticity of the model residuals.

Thus, the study showed that, despite the presence of autocorrelation between variables, the model is homoscedastic. The coefficient of determination and the Fisher criterion also confirm the high quality of the model, however, the approximation error of the second model is slightly higher than the first one (see (2) and (3)), the Akaike information criterion also confirms the need to choose the first model:

$$AIC_1 = -4,84, AIC_2 = -3,69$$

However, based on the fact that in the first constructed model, only three out of eight coefficients for variables are statistically significant, and in the second model, five out of six are statistically significant, we conclude that it is necessary to build a forecast based on the second model.

In accordance with the results of the Breusch-Pagan test, the probability of accepting the null hypothesis for the whole model is above 5% and, therefore, we can accept the alternative hypothesis that there is no heteroscedasticity of the model residuals.

Thus, the study showed that, despite the

presence of autocorrelation between variables, the model is homoscedastic. The coefficient of determination and the Fisher criterion also confirm the high quality of the model.

Как следует из данных, полученных с помощью программы EViews методом наименьших квадратов, полученная многофакторная модель будет иметь вид:

-Equation (6) expresses the dependence of the government performance indicator (Y) on the quality of regulation / quality of legislation indicator (x1), the indicator of government openness (order and safety) (x2), the indicator of law enforcement (x3), criminal justice (x4), civil justice (x5), absence of corruption indicator (x6). The coefficients of the equation show the quantitative impact of each factor on the performance indicator, while others remain unchanged. In our case, the government performance indicator is:  $-\Box$  grows by 0.27 units. with an increase in the quality of regulation / quality of legislation by 1 unit. with all other indicators unchanged;

 $\Box$  tends to increase by 4.61 units. with an increase in the government openness index by 1 unit. subject to the invariance of other indicators;

☐ grows by 1.63 units. with an increase in the index of compliance with laws by 1 unit. with the remaining indicators unchanged;

 $\Box$  increases by 6.70 units. with an increase in the criminal justice index by 1 unit. subject to the invariance of other indicators;

☐ increases by 7.16 units. with an increase in the indicator of civil justice by 1 unit. subject to the invariance of other indicators;

 $\Box$  and, finally, decreases by 2.49 units. with an increase in the indicator of the absence of corruption.

Thus, the indicators of civil and criminal justice give the greatest increase to the productive attribute.

The study showed that model (3) can be used to make a forecast based on it, having previously predicted explanatory variables based on trends (Table 4).

| Excel spreadsh | eet editor) | •       |                 | <i>y</i> •==• •••=•= |                |   |
|----------------|-------------|---------|-----------------|----------------------|----------------|---|
| Variable       | model type  | Relatio | onship equation |                      | R <sup>2</sup> | ] |

Table 4 Characteristics of temporal models of explanatory variables (Built by the author using the

| Variable | model type | Relationship equation                                                         | R <sup>2</sup> |
|----------|------------|-------------------------------------------------------------------------------|----------------|
| x1       | Linear     | $x_1 = 0,0836 \cdot t - 1,8581$                                               | 0,77           |
| x2       | Polynomial | $x_2 = 0,0012 \cdot t^2 - 0,0214 \cdot t + 0,4087$                            | 0,69           |
| x3       | Linear     | $x_3 = -0,0025 \cdot t + 0,4647$                                              | 0,47           |
| x4       | Polynomial | $x_4 = -0,0022 \cdot t^2 + 0,0357 \cdot t + 0,3015$                           | 0,91           |
| x5       | Polynomial | $\mathbf{x}_5 = -0,001 \cdot \mathbf{t}^2 - 0,0097 \cdot \mathbf{t} + 0,5119$ | 0,67           |
| x6       | Linear     | $x_6 = 0,113 \cdot t + 0,2742$                                                | 0,85           |

On the basis of trend dependencies, we will construct predictive values of exogenous variables (Table 5).

| Table 5 Forecast values of exogenous model variables up to 2026. (Developed by the author on the |
|--------------------------------------------------------------------------------------------------|
| basis of the constructed multi-factor economic and mathematical model)                           |

| Years             | Regulatory<br>quality / quality<br>of legislation<br>(regulatory<br>quality) | Open<br>government<br>(order and<br>security) | Compliance<br>with laws<br>(Regulatory<br>Enforcement) | criminal<br>justice /<br>criminal<br>justice | civil<br>justice /<br>civil<br>justice | Absence of<br>Corruptio<br>n |
|-------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------|
| 2021 y.<br>(fact) | -0,92345                                                                     | 0,31                                          | 0,43                                                   | 0,43                                         | 0,53                                   | 0,41                         |

| 2022 y. | -0,8549 | 0,5865 | 0,4347 | 0,4131 | 0,5395 | 0,4098 |
|---------|---------|--------|--------|--------|--------|--------|
| 2023 y. | -0,7713 | 0,5951 | 0,4322 | 0,3938 | 0,5548 | 0,4211 |
| 2024 y. | -0,6877 | 0,6061 | 0,4297 | 0,3701 | 0,5721 | 0,4324 |
| 2025 y. | -0,6041 | 0,6195 | 0,4272 | 0,342  | 0,5914 | 0,4437 |
| 2026 y. | -0,5205 | 0,6353 | 0,4247 | 0,3095 | 0,6127 | 0,4550 |

The obtained predictive indicators of the factors of the constructed model will make it possible to predict the effective factor - the index of the efficiency of the government of the Republic of Uzbekistan (Fig. 1).



#### Rice. 1. Forecast values of the performance index of the government of Uzbekistan in 2022-2026

Thus, in accordance with the constructed model, starting from 2022, the performance index of the government of the Republic of Uzbekistan will increase significantly, while taking on a positive value, and by 2026 will exceed 0.75.

Based on the study, the main goal of the state policy of Uzbekistan for the future in the field of improving the efficiency of the government should be the development of a state program to improve the quality of criminal and civil justice, providing a system of measures to increase the level of government openness and compliance with laws. The implementation of strategic goals in the field of improving the efficiency of government measures will lead to an increase in the democratization of society, an increase in the availability and quality of information resources, a decrease in the level of corruption, and, ultimately, will achieve the most important goals of sustainable development of Uzbekistan [8].

The implementation of projects for the digitalization of public administration is aimed at

improving the effectiveness of public administration, including the quality of public services provided, and its efficiency, that is, at reducing the costs of the state, business and citizens associated with the implementation of certain public functions. Thus, it can be assumed that a high level of digitalization of public administration provides a higher level of quality of public administration in general or its individual parameters.

The introduction and use of digital technologies in public administration requires the training of highly qualified professional personnel for the modern IT market, innovative development of enterprises and accelerated technological renewal.

#### References

1. Joint report of the Digital Development Initiative Program and the Center for Economic Research: "Introduction of egovernment and administrative reform in Uzbekistan - interconnection and mutual influence", September 2018, DDI, CER - 54 p. 2. Kremer N.Sh., Putko B.A. Econometrics. - M.: Unity-Dana, 2016 - 311 p.

3. Chepel S.V., Shibarshova L.I. Macroeconomics and Microeconomics. Collection of situational tasks and training examples. Practice of Uzbekistan. Textbook - T., 2017 - 107 p.

4. Malysheva M.A. Theory and methods of modern public administration. Teaching aid. - St. Petersburg: Department of Operational Printing NRU HSE - St. Petersburg, 2011. 280 p.

5. Efremov A. A. Evaluation of the impact of legal regulation on the development of information technologies: mechanisms and methods // Law. 2018. No. 3. P. 45–46.

6. V.N. Yuzhakov V.N., Talapina E.V., Klochkova E.N., Efremov A.A. Public administration in the sphere of stimulating the development of information technologies: problems and directions of improvement // Journal of Legal Studies. 2017. V. 2. No. 3. P. 89-100.

7. Isokhuzhaeva M.Ya. "Actual issues of e-commerce management in the context of digitalization of the economy of Uzbekistan." Section in the international journal "Economics of Central Asia", January-March 2022. - Volume 6. - No. 1. - doi: 10.18334/asia.6.1.114528. 3).

8. Isokhujaeva M.Y. «Needs for Improvement of Electronic Commerce in Uzbekistan». Hokkaido University Collection of Scholary and Academic Papers.The Annals of Center for regional Economic and Business Networks (journal title).bulletin (article). Volume 10. (<u>Needs for Improvement of Electronic</u> Commerce in Uzbekistan : HUSCAP) (<u>hokudai.ac.jp)</u>26.03.2021(p.93-107) http://hdl.handle.net/2115/80999.

9. Mirisaev A.A. Nekotorye voprosy digitization economic Uzbekistan. Economy: Analyzes and forecasts. A collection of papers of the XIII Forum of Uzbekistan's economists on the "Strategic initiatives and practical topic recommendations for sustainable economic development: opportunities and risks". Tashkent, 2021 #(14) - S. 225-231.

10. Mirisaev A.A.- Some issues of attracting foreign investment for modernization and technical re-equipment of the most important areas of the economy **Impact Factor** ISJ Theoretical & Applied Science Journal - may 2020/USA 501-505 **GOOGLEhttps://www.google.com/search?q=** <u>publication+Mirisaev+A.&rlz=1C1CHZO\_ru</u> <u>UZ927UZ927&sxsrf=ALeKk00YeKkE1fMde</u> <u>wemNphH0o1YHXXPXQ:1606717203733&s</u> <u>ource=lnms&sa=X&ved=0ahUKEwjJ-</u> <u>7qB0KntAhWRxIsKHeqcDR8Q\_AUICigA&</u> <u>biw=1366&bih=568&dpr=1</u>

11. Mirisaev A.A. Ways to improve the efficiency of investment in housing construction and mortgage lending **Impact Factor** EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 3 | March 2020 - Peer Reviewed Journal/ India 604-609 бетлар.

12. Ortikbayevich, Karimov Inomjon, and Ibragimov Salokhiddin Ochilovich. "Ways to improve the efficiency of investment projects in construction." ACADEMICIA: An International Multidisciplinary Research Journal 10.5 (2020): 460-465.

13. Karimov I.O. Attracting investment projects to the construction industry and improving their efficiency. SAARJ Journal on Banking & Insurance Research 10 (1), 47-53, 2021, South Asian Academic Research Journals.

14. DA Normurodovich, KI Ortikbaevich. Recommendation and for the implementation of innovation in construction. ACADEMICIA: An International Multidisciplinary Research Journal Year : 2021, Volume : 11, Issue : 911 (9) (2021), 463-468 2021