
Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 7, 4373-4401

Finding The Best Approach For Using Serious Games In

Teaching Computer Programming

Abdelbaset Jamal Assafa, Barry McCollumb and Paul McMullanb

aLuminus Technical University College, Jordan
bQueen’s University Belfast, UK

Abstract

Several studies reported the problem of high attrition and failure rates in computing schools. Many

solutions were proposed and used to overcome these difficulties. The use of serious games for teaching

computer programming was among the proposed solution. Several studies have reported the use of serious

games and the benefits of using such educational method. However, different approaches can be applied

when using serious games and no study compared the different approaches to find the best way for using

serious games. This study compares two different approaches for using a serious game called Robocode

for teaching computer programming. The study conducted an experiment with first year students taking

introductory to programming course in three universities in Jordan. The results showed that using serious

games for teaching computer programming through tutorials is the best approach. The results showed a

significant improvement for using serious games through tutorials when compared to not using serious

games at all.

1. Introduction

Technology has shaped and reformed almost

every aspect of our life over the past decades. We

are currently living in a digital world and

Computer Science has a huge impact on this

world. Thus, the demand on computer scientists

is increasing to cope with the needs of this

growing industry; however, computing faculties

are facing major problems embodied by the high

attrition rates and high failure rates Bennedsen

and Caspersen (2019); Sithole, Chiyaka,

McCarthy, Mupinga, Bucklein and Kibirige

(2017); Dasuki and Quaye (2016); Swamidurai

and Kannan (2016); Seyal, Mey, Matusin, Siau

and Rahman (2015); Watson and Li (2014);

Corney, Teague and Thomas (2010); Lu and

Fletcher (2009); Gomes and Mendes (2007);

Kinnunen and Malmi (2006); Beaubouef and

Mason (2005). Simon, Luxton- Reilly,

Ajanovski, Fouh, Gonsalvez, Leinonen,

Parkinson, Poole and Thota (2019) "found that

pass rates in introductory programming courses

appear to average about 75%; that there is some

evidence that they sit at the low end of the range

of pass rates in introductory STEM courses.".

Furthermore, Swamidurai and Kannan (2016)

stated that the average failure rate at Alabama

State University is about 30% to 35% and the

failure rate of various computer programming

courses are very high when compared to non-

programming courses.

Computer Science majors have been facing a

sharp decline in enrolment Ali (2009);

Benokraitis, Bizot, Brown and Martens (2009).

The Taulbee survey informed that about 50%

fewer students entered Computer Science in 2007

compared to 2000 Zweben (2008). The Taulbee

 Abdelbaset Jamal Assaf 4374

survey is a survey conducted yearly by the

Computing Research Association to document

trends in student enrolment and degree

production in the United States and Canada

universities that offers PhD in Computer Science,

Computer Engineering or Information. The first

increase in six years in enrolment for computing

majors in the USA happened in 2008 with an

increase of 6.2% compared to 2007 Zweben

(2009). An increase for enrolments in computing

majors has been reported each year by the

Taulbee survey with the last survey reporting an

increase by 11.4% in 2017 comparing to the

previous year Zweben and Bizot (2017). The

survey reports a decrease of 12% in the awarding

of BSc degrees in computing majors in 2009

compared to 2008 Zweben (2010). However,

from 2010 to 2017 there was an increase in the

awarding of the degrees. The increase of the

awarding rate was expected because of the

increase in the enrolments for the surveyed

universities. But the survey does not report the

attrition that occurs during the years. Moreover,

the survey depends on the number of responses it

receives. Each year, new universities are

included in the survey and sometimes the

previous universities can choose not to report.

This makes the results inconsistent because some

universities can simply not report to the survey

when they have low enrolment or high failure

rates. This can affect the results of the survey.

In 2010/2011, Woodfield (2014) found that

Computer Science was the discipline with the

lowest continuation rate

(91%), while students taking Computer Science

formed 4.2% of the whole student body (67,847

people) included in the study. Similarly,

University of West England reported an

extremely low continuation rate in all computing

programs. In the 2010/2011 academic year, the

continuation rate was 78% and 82% in

2013/2014 Green, Plant and Chan (2016).

Further, the study reported the retention or

continuation rate for all the programs in the

university between the years 2010 to 2015 and

the continuation rate was more than 90% for all

the years. Also, a study carried out by Talton,

Peterson, Kamin, Israel and Al-Muhtadi (2006)

stated that about 25% of the total number of

entering freshmen have dropped out of the

Computer Science program by the end of their

first year from 1998 to 2003. The failure and

dropout rates are high, mostly in the introductory

computer programming courses Gomes and

Mendes (2007). Beaubouef and Mason (2005)

identified that there is about 30%-40% attrition

rate for computing students and the vast majority

of that occurs after the introductory to

programming module. Also, Mcdowell, Werner,

Bullock and Fernald (2006) stated that students

change their majors after taking the first

programming course in Computer Science. It has

been shown that the problem occurs during the

introductory to programming module, which

leads to low continuation rate. Beaubouef and

Mason (2005) connected the high attrition rate to

poor advising, poorly planned labs, poor problem

solving and math skills and the lack of practice

and feedback. Moreover, some studies Manaris

(2007); Beaubouef and Mason (2005) have stated

that the complexity of the programming

languages used in the introductory courses might

be one of the factors affecting the attrition rate.

Furthermore, Gomes and Mendes (2007) have

highlighted the need for an increased amount of

practice time and students’ engagement.

1.1. Difficulties in teaching computer

programming

While investigating the high attrition rate in

computing it has been found that computer

programming attracted more interest over other

Computer Science topics. Bergin and Reilly

(2005) have confirmed the difficulties in learning

computerprogrammingandhaveconcludedthatthi

scanresultinhighattritionandfailurerates.

 4375 Journal of Positive School Psychology

According to Azadand Shubra (2010), the study

estimated at least 25% of students drop the

introductory to programming course because of

the difficulty in learning computer programming.

In the recent years, numerous studies have

emerged to demonstrate that novice

programmers have difficulties in learning

Object-Oriented Programming (OOP) concepts

Kunkle and Allen (2016); Biju (2012);

Bennedsen and Caspersen (2007); Goosen and

Pieterse (2005); Kelleher and Pausch (2005);

Ragonis and Ben-Ari (2005); Hanks, Mcdowell,

Draper and Krnjajic (2004); Robins, Rountree

and Rountree (2003); Jenkins (2002). For

example, students face several problems

understanding classes, objects, recursion and

inheritance Yan (2009). There are issues that

emerge when teaching programming at an early

stage, where students struggle with analyzing and

designing of the code Papadopoulos and Tegos

(2012); Dann, Cooper and Pausch (2000); Lopez,

Whalley, Robbins and Lister (2008); Cooper and

Pausch (2000). Further, students face difficulties

because of the rigid programming syntax and the

large amount of time required to assemble a

simple output Olipas (2022); Sloan and Troy

(2008); Wilson (2002). Moreover, Qian and

Lehman (2017) expressed that students have

difficulties in syntactic knowledge, conceptual

knowledge, and strategic knowledge.

1.2. Innovative ways of teaching

programming

Lately, there has been criticism of the traditional

methods of teaching computer programming

implying that they don’t allow students to apply

their knowledge, which leads to a decrease in

student retention. Queirós, Pinto and Terroso

(2020); Bosse and Gerosa (2017) stated that

teaching computer programming is a complex

activity that requires a lot of practice and

traditional teaching approaches have not been

able to respond effectively. Moreover, Zhang,

Zhang, Stafford and Zhang (2013b) reported that

traditional and conventional teaching methods

using static material such as books and slides no

longer relevant and effective in teaching and

learning of computer programming. Thus, Cheah

(2019) elucidated that teaching material should

be able to support spatial visualization by

incorporating multimedia elements and

interaction to explain the dynamic concept of

programming.

Several studies have claimed that academic

advising, involvement and engagement, well-

prepared teaching material, student support

services and learning experiences are vital for

student retention Roberts and Styron (2011);

Barker, McDowell and Kalahar (2009); Michael

and Chen (2005). Further, Cheah (2020)

highlighted four factors which contribute to the

difficulties in teaching and learning computer

programming, which are phases of programming

stage, problem solving skills, ineffective

pedagogy and personal traits and attitude. Also,

lack of understanding during the early stage of

computer programming is one of the main factors

contributing to the failure to understand

computer programming Piwek and Savage

(2020); Savage and Piwek (2019); Bosse and

Gerosa (2017).

Thus, MacLean (2010) focused on the need for

changing the introductory Computer Science

courses teaching methods. Numerous proposed

solutions were carried out. Some studies focused

on students’ attendance and marks, such as the

one carried out by Green et al. (2016). They

developed a system to identify and track students

at risk of failing for the aim of preventing it.

Some studies developed systems like the one in

the study by Gálvez, Guzmán and Conejo (2009).

They developed an Object-Oriented

Programming System (OOPS), which is a

problem-solving environment, where students

 Abdelbaset Jamal Assaf 4376

can solve OOP exercises and get instant on-

demand feedback. Also, they used a web-based

assessment system called SIETTE as a testing

system to form their own blended e-learning

approach. Other studies focused on improving

the teachers’ methods of delivering

lectures\lessons such as the proposed teaching

workshops by Porter, Lee, Simon and Guzdial

(2017), which aimed to show how to be an

effective teacher. Furthermore, the use of pair

programming in introductory courses was

implemented to contribute to greater

perseverance in computing majors Porter,

Guzdial, Mcdowell and Simon (2013); Mcdowell

et al. (2006). Pair programming targets the

problem of low retention rates that is caused by

the low percentage of students’ participation in

activities. Sprint and Cook (2015), promoted

group programming in a competition using decks

of cards for questions.

2. Serious games in teaching computer

programming

Serious games (SGs) have similar terms in the

literature. Smith (2013) listed some of the

popular terms, such as Educational Games,

Edutainment, Simulation, Virtual Reality, Digital

Game-Based Learning and Immersive Learning

Simulations. The SGs studies are diverse in the

literature and SGs have various definitions. Most

of them describe and demonstrate SGs as

interactive, entertaining, goal-focused and

competitive Tobias and Fletcher (2007); Vogel

and Wright (2006); E. and J. (1984). Abt (1970)

provided one of the earliest definitions and

descriptions of SGs, where SGs were described

in these terms: “these games have an explicit and

carefully thought-out educational purpose and

are not intended to be played primarily for

amusement. This doesn’t mean that serious

games are not, or should not be, entertaining”.

Alternative definitions for SGs are available in

the literature such as Michael and Chen (2006)

where they defined SGs as “a game in which

education (in its various forms) is the primary

goal, rather than entertainment”. SGs offer

educational content to users in an enjoyable way

by simulating scenarios which promote learning.

There are various definitions for SGs and its

different terms, but they all agree on the

importance of the delivered educational impact.

Moreover, the definitions highlight the

importance of different characteristics that must

be present in the SGs to engage, motivate and

immerse the users such as entertainment and

enjoyment. If a SG doesn’t engage or motivate

the user in an interactive and entertaining way as

a video game does, the user will not be immersed

and focused while using the SG. Thus, the SG

will fail to deliver its educational content to the

user or the benefits of playing the game will be

minimized.

As a result, the Computer Science teachers are

using SGs to stimulate students Ramabu, Sanders

and Schoeman (2021); ndrew Luxton-Reilly,

Becker, Ott, Simon, Giannakos, Paterson,

Albluwi, Kumar, Scott, Sheard and Szabo

(2018); Corral, Balcells, Estévez, Moreno and

Ramos (2014); Malliarakis and Xinogalos

(2014); Eagle and Barnes (2009); Barnes,

Richter, Powell, Chaffin and Godwin (2007).

3. Serious games usage and success

factors

Several factors affect the success of using

simulation software and SGs in teaching. First,

learning environment, which should be

interactive, flexible and personalised Malliarakis

and Mozelius (2015); regardless delivered

through lectures, lab sessions or assignments

Sun, Tsai, Finger, Chen and Yeh (2008). Teo

(2014) stated that learning environment is a key

factor that influences the success of using e-

 4377 Journal of Positive School Psychology

learning. Second, usage of space, the use of

simulation software can overcome the problems

associated with traditional learning related to

space Navimipour and Zareie (2015); Tîrziu and

Vrabie (2015);Wang (2014); Xu, Huang,Wang

and Heales (2014). Third, students’ access,

whether limited or unlimited. Simulation

software and SGs deliver 24/7 access to learning

materials, which has a massive influence on the

success of the learning process Zareie and

Navimipour (2016); Omar, Hassan and Atan

(2012); Gunasekaran, McNeil and Shaul (2002).

Fourth, staff contacts’ time, whether the use of

simulation software and SGs requires extra staff

time or not. Once the software is perceived to be

easy to use, then no previous staff experience is

required Capece and Campisi (2013); Rubin,

Fernandes and Avgerinou (2013), and thus, no

extra staff contact time. On the other hand, if the

software is complicated then extra preparation is

needed, which leads to extra staff time. However,

the 21st-century students who are raised in a

digital world are familiar with complicated

technologies and computer games are part of their

everyday life Malliarakis and Mozelius (2015).

Fifth, cost, the use of SGs provides a cost-

effective approach for reaching different learners

and meeting continuous learning requirements

Chen (2014); Lee, Hsieh and Ma (2011)).

Learning environment is a crucial factor because

it controls 4 other factors, which are staff contact

time, students’ access, usage of space and cost.

Table 1 shows the controlled factors by learning

environment. reaching different learners and

meeting continuous learning requirements Chen

(2014); Lee, Hsieh and Ma (2011)). Learning

environment is a crucial factor because it controls

4 other factors, which are staff contact time,

students’ access, usage of space and cost. Table 1

shows the controlled factors by learning

environment.

Table 1: The controlled factors by the learning environment factor

 Lectures Assignments

Staff contacts’ time Time limited to usual

lectures or extra lectures

Time to reply to students

queries and questions

Students’ access Limited Unlimited

Usage of space Use of computer lab No use of space

Cost The cost of the serious

game and running the lab

The cost of the serious

game

Table 2 compares the several attempts of using

SGs for teaching computer programming in terms

of the country, learning environment, staff

contact time, student access, usage of space and

cost.

Based on the World Economic Situation and

Prospects book United-Nations (2018), the

countries were classified based on their economy.

Figure 1 shows the percentage of the studies that

were conducted in each country group. The figure

shows that 75% of the studies were conducted in

developed countries, in which there are no

barriers in terms of the computing infrastructure

or technology budget. Only 25% of the studies

considered developing countries to test the use of

SGs in teaching computer programming. While

applying SGs in teaching computer programming

in developing countries, several barriers

appeared, such as the fragile computing

infrastructure, lack of technology budget

Talebian, Mohammadi and Rezvanfar (2014);

 Abdelbaset Jamal Assaf 4378

AlAmmary (2012) and cultural issues Farid,

Ahmad, Niaz, Arif, Shamshirband and Khattak

(2015). There are not enough studies and research

to prove the possibility of the successful

implementation and usage of SGs for teaching in

developing countries. This formulates the need

for more studies to investigate the feasibility and

possibility of using SGs for teaching in

developing countries. Furthermore, all the

presented studies in table 2 concluded that SGs

enhanced students’ understanding of the covered

topics and\or increased the motivation of the

students. Using SGs can be done by assignments

or lectures. Any of the two choices can affect and

change several factors. Yet, no study compared

the two approaches and investigated which

approach achieves better results. This forms a gap

that needs to be addressed, explored and

analysed. Thus, there is a need for designing an

experiment to investigate the effect of using SGs

in teaching computer programming and to find

the best approach to use such alternative. Further,

there is a need to conduct the experiments in a

developing country to investigate the feasibility

and possibility of using SGs for teaching in

developing countries. Designing and conducting

the experiments will be answering the following

research questions:

1. Does the use of serious games affect

students’ understanding of computer

programming concepts?

2. What is the best approach for using

serious games in teaching computer

programming?

3. Is it possible to use serious games for

teaching computer programming in

developing countries?

Figure 1: Studies by country, See also Table 2.

Table 2: Serious games studies summary

Study Country Learning Staff contact

environment time

Student

access

Usage

of

space

Zhang, Caldwell and Smith

(2013a)

USA Tutorial alongside

Extra lectures

traditional lectures

Limited access Lab

 4379 Journal of Positive School Psychology

Malliarakis and Xinogalos

(2014)

Greece Labs alongside

Extra lectures

traditional lectures

Limited access Lab

Corral et al. (2014) Spain Labs alongside

Extra lectures

traditional lectures

Limited access Lab

Eagle and Barnes (2008) USA Extra lectures after

Extra lectures

the semester

Limited access Lab

Ross (2002) USA Assignments Regular

lectures

Unlimited

access

None

Baker, Zhang and Caldwell

(2012)

USA Labs alongside

traditional

lectures

Extra lectures Limited access Lab

Liu (2008) Canada Assignment Regular

lecture

Unlimited

access

None

Al-Linjawi and Al-Nuaim

(2010)

Saudi

 Arabia

Extra lectures Extra lectures Limited access Lab

Hillyard, Angotti,

 Panitz, Sung,

Nordlinger and Goldstein

(2010)

USA Assignment Regular

lectures

Unlimited

access

None

Miljanovic and Bradbury

(2017)

Canada Assignment Regular

lectures

Unlimited

access

None

Zhao and Muntean (2019) Ireland Labs alongside

traditional

lectures

Regular

lectures

Limited access Lab

Watson and Lipford

(2019)

USA Labs alongside

traditional

lectures

Regular

lectures

Limited access Lab

Agalbato and Loiacono

(2018)

Italy Assignment Regular

lectures

Unlimited

access

None

Comber,

 Motschnig,

 Mayer and

Haselberger (2019)

Austria Labs alongside

traditional

lectures

Regular

lectures

Limited access Lab

Jordaan (2018) South

Africa

Labs alongside

traditional

lectures

Regular

lectures

Limited access Lab

Malliarakis and Xinogalos

(2017)

Greece Labs alongside

traditional

lectures

Extra lectures Limited access Lab

 Abdelbaset Jamal Assaf 4380

Erol and Kurt (2017) Turkey Labs alongside

traditional

lectures

Extra lectures Limited access Lab

Topalli and Cagiltay

(2018)

Turkey Labs alongside

traditional

lectures

Regular

lectures

Limited access Lab

Zhao, Chis, Muntean and

Muntean (2018)

3

European

countries

Labs alongside

traditional

lectures

Extra lectures Limited access Lab

Mathrani and Ponder-

Sutton

(2016)

New

Zealand

Labs alongside

traditional

lectures

Regular

lectures

Limited access Lab

Ouahbi, Kaddari,

Darhmaoui,

Elachqar and Lahmine

(2015)

Morocco Labs alongside

traditional

lectures

Extra lectures Limited access Lab

Rozali and Zaid (2017) Malaysia Labs alongside

traditional

lectures

Extra lectures Limited access Lab

Rajeev and Sharma (2018) USA Labs alongside

traditional

lectures

Extra lectures Limited access Lab

Galgouranas and Xinogalos

(2018)

Greece Labs alongside

traditional

lectures

Extra lectures Limited access Lab

4. Methodology

This section and the following sub-sections will

describe the chosen students sample, the

experimental design and tasks of the experiment,

the used SG and the data analysis technique that

will be used.

4.1. Students sample

Recruiting participants is a challenge, but since

our target is university students, announcements

will be made in the lectures about the experiment.

The announcement day will be after the teachers

covered specific programming concepts and not

at the beginning of the semester. Because

students will get distracted from all the

information they will get at the start of the

semester and to ensure that all the students

understand that this experiment and its tests are

independent of the module itself. After obtaining

ethical approval, the experiment will be

described for all the students on the

announcement day highlighting all the benefits

students can gain from participating. Students

who want to participate will read and sign a

consent form that describes the experiment from

the beginning to the end.

To decide who to recruit, the population must be

analyzed. Since the study focuses on teaching

programming concepts, we need to check the

 4381 Journal of Positive School Psychology

population that want to participate in the

experiment in terms of any previous

programming experience and any experience in

using the SG that we will use. Students with

previous programming experience apart from

high school programming materials and any

previous knowledge of the chosen serious game

will be excluded. The study Feigenspan, Kastner,

Liebig, Apel and Hanenberg (2012) found that

self-estimation of programming language

experience for undergraduate students correlates

with programming tasks. Thus, participants will

be asked about their programming experience

and about any familiarity with the chosen SG

before including them in the experiment.

With regards to the student sample and as Singh

(2006) stated “the size of the sample depends

upon the precision the researcher desires in

estimating the population parameter at a

particular confidence level. There is no single

rule that can be used to determine sample size.

The best answer to the question of size is to use

as large a sample as possible”. Moreover, the

study by All, Castellar and Looy (2016)

conducted a semi-structured interview with

experts who were defined as “staff members of

an organization with a specific professional

function and a specific experience and

knowledge for this purpose”. The experts were

chosen to have at least a PhD degree or still

conducting relevant research, which evaluates

educational interventions. The aim of the

interviews was to define the preferred methods

for conducting digital game-based learning

effectiveness studies. The results reported that an

absolute minimum suggested by the experts is 20

participants per condition. Therefore, the study

aims to recruit as many students as possible and

ensure that a minimum of 20 participants is

allocated to each group.

4.2. Experimental design

The chart in figure 2 presents the study

experiment that follows a Comparative design,

which is used to compare the effectiveness of

different treatment modalities Kumar (1996). For

example, to compare the effectiveness of three

teaching models (A, B and C) on the level of

comprehension of students in a class. The

experiment design consists of three groups as

follow:

1. The Control Group (CG): students will only

take Pre- and Post-Tests.

2. The First Experiment Group (EG1): students

will take the Pre- and Post-Tests. Students in

this group will take an induction lecture

followed by an assignment, where they will

use the serious game to learn and apply their

knowledge of programming. The group will

take 2 weeks to complete the assignment.

3. The Second Experiment Group (EG2):

students will take the Pre- and Post-Tests.

Students in this group will take lectures,

where they will be guided to use the serious

game to finish the same assignment as

students in EG1. The group will take 4

lectures, 2 hours each to complete the

assignment.

All et al. (2016) conducted interviews with

experts to define the preferred methods for

conducting digital game based learning

effectiveness studies. The results of the study

showed that randomization has been accepted by

all experts as the preferred method for assigning

the participants to condition. However, Matching

has been suggested by most of the experts (12 out

of 13) as a method to guaranteeing similarity

between conditions and controlling for certain

variables. Table 3 provides an overview of

variables to match participants in different

conditions as suggested by the experts.

Figure 2: Research experiment

Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 7, 4373-4401

The students' distribution in the groups will be

based on their previous knowledge represented

by the pre-test scores. Students will be divided

equally into the three groups according to their

scores instead of randomly distributing them to

avoid bias. Part 1 in figure 2 shows that the

chosen student sample will take a pre-test and

based on the results, the students will be divided

into the three groups shown in part 2 of the figure.

Part 3 of figure 2 shows that the students will

take a post-test. After completing the test and as

shown in part 4 of figure 2, the results will be

analyzed using ANOVA and post-hoc tests. Since

we have two experimental groups and one

controlled group, and the data collection will be

based on a between-subject design, where

different groups of people are assigned to each

group. The tasks that will be assigned to the

groups are different from one group to another.

But the common task will be the pre-post-tests.

Students in all three groups will take the same

tests. The EG1 involves playing a serious game

as an assignment, where students will be given a

short induction lecture and they will be provided

with the required tools to complete the task. They

will be given 2 weeks to complete their task. The

students in this group will have a 24/7 access to

the serious game either from the university or

from their personal computer devices. On the

other hand, the EG2 is limited to 4 lectures, 2

hours each, where students will be guided on how

to use the serious game to complete the required

task. The students will have access to the serious

game through the university computers only and

have limited hours. Table 4 shows the location,

covered topics and the duration for the

experimental groups.

Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 7, 4373-4401

Table 3: Variables suggested to match on.

Variables Description

Previous knowledge Matching on prior academic achievement or pre-test scores

Ability Matching on different ability levels (e.g. Low, medium and

high achievers)

Motivation Matching on motivation towards the learning content

Game experience Matching on previous experience with games

Gender Matching on gender (male\female)

Age Matching on age\age categories

SES Matching on socio-economic status

Table 4 Task design.

 Experiment group 1 (EG1) Experiment group 2

(EG2)

Location Any University lab

Covered topics Variables, methods, objects,

strings, loops and arrays

Variables, methods,

objects, strings, loops

and arrays

Duration 2 weeks 4 lectures, 2

hours each

4.3. Pre- and post- tests

The pre- and post-tests will be used to measure

students understanding of a specific computer

programming concepts, such as variables

declaration, methods calling, strings, loops and

arrays. Both tests are formed of 20 multiple

choice questions each and designed using g

Alliger and Horowitz (1989) concept of multiple-

choice tests to eliminate the guessing from

changing the score of the test. Each question has

a subsequent question asking if the student knows

the answer or the student is just guessing. Figure

3 shows an example. In the pre- and post-tests,

the questions are divided as follow:

1. The first 2 questions are about

variables and methods declaration.

2. Questions (3, 4, and 6) are about

calling methods.

3. Question 5 is about creating an

object.

4. Questions (7, 8, 9, 10, and 11) are

about Strings and its methods.

5. Questions (12, 13, 14, 15, and 16)

are about Loops.

6. Questions (17, 18, 19, and 20) are

about Arrays.

Using this concept in the tests allows to eliminate

the guessing factor or knowing the correct

answer by luck. Also, by using this concept we

can get the answers in the traditional way by just

marking the right answer or we can add the filter

“Yes, I know the answer” so we can get the mark

 Abdelbaset Jamal Assaf 4384

based on the actual understanding of the topic

that is being tested. Moreover, using this concept

can reveal the misunderstanding of a certain topic

when the answer is wrong but marked as “Yes, I

know the answer”. Another factor can be

identified and analyzed, which is either the

increase or the decrease of confidence in the

knowledge when answering the questions

between the pre-and the post-tests.

Figure 3: Question example

4.4. Variables

We have one Independent Variable (IV) with

three levels and each level is assigned to a group.

The CG has class lectures as the first level. The

EG1 has the serious game assignment along with

the class lectures as the second level. The EG2

has the extra serious game lectures along with the

class lectures as the third level. Table 5 shows the

three IV levels, their assigned group and their

allocated task.

Table 5: Independent variable levels.

Independent variable levels Group Task

Level 1 Control group (CG) Attend class lectures

Level 2 First experimental group (EG1) Attend class lectures

and take the serious

game assignment

Level 3 Second experimental group (EG2) Attend the class

lectures and extra

serious game lectures

The study has one dependent variable (DV),

which is students’ understanding that will be

measured by the marks of the post-test. Students

in all three groups will take the same test at the

end of the experiment as shown in part 3 in figure

2.

4.5. The used serious game

The selected SG is Robocode which is short for

“Robot Code”. It is an open-source Java-based

virtual robot game that is intended to teach

object-oriented programming concepts. The

Robocode game consists of a robot-development

tool and it simulates a virtual battlefield where

robots can battle against each other. The player

programs the robot commanding it how to

perform and respond to events arising in the

battlefield. Thus, Robocode forms a space for

students and learners to learn and apply their

knowledge in OOP. It covers writing classes,

reading, analyzing and using existed code, event

handling and message passing Bonakdarian and

L. (2004). Robocode battles are running in real-

time and on-screen. The game starts at least with

 4385 Journal of Positive School Psychology

two robots and each one of them starts with the

energy of 100 and dies when it drops to zero. The

game ends when there is only one robot left on

the battlefield or when the time runs out. Robot

class is automatically generated when creating a

new robot and the class contains a run method

with an infinite loop that defines the default

behavior for the robot. Additionally, the object

has methods such as onScannedRobot,

onHitWall, and onHitByBullet which are

responsible for handling a response to a

particular event by calling other methods which

will perform some actions either by moving the

robot or investigating about the opponent robot.

What makes Robocode a good game for learning

is that it represents the object with a visual

activity. The students or learners can see the

results and consequences of their implementation

and calculations live on the battlefield.

Furthermore, the rules of the game in terms of

losing and gaining energy requires deep thinking

and push students or learners to use different and

analyzed strategies. Because when a robot fires a

bullet, the same robot loses energy with the same

amount of the firepower, which makes the game

not only about firing bullets. However, if the

bullet hits another robot, the robot will gain back

some energy and the opponent tank will lose four

times the firepower. Hence, making a decent

robot requires such an implementation that

effectively fires and dodges bullets. A notable

feature of Robocode is that it allows the users to

instantly view and test their robots' behavior

against different provided sample robots. This

makes the testing and debugging easy and

interactive. Thus, making the game covers

several stages of the software development

process. Moreover, the battling and challenging

feature of the game provides a competitive and

fun factor that acts as an attraction feature for the

students. The game acts as a motivational

element to impulse the students to study and

understand different programming concepts to be

able to create a robust robot, which will lead into

adding to the overall students' experience.

Robocode creator Mat Nelson stated that

Robocode is "like chess, simple to learn, difficult

to master" Triplett (2002), since a simple robot

can be developed in minutes, where a

sophisticated robot can take months of

development. This means that Robocode can be

used on various levels of students and even on

experienced Computer Science graduates.

Further, Hartness (2004) stated that Robocode

can be used to encourage students to master

difficult concepts and apply their knowledge in

an interesting situation. Also, they can use

Robocode to apply their knowledge without the

need for mastering all the details of the game.

4.6. Data analysis

Since we want to compare the mean of different

groups. T-test can be used to compare the

different groups in pairs and repeat this process

to test the multiple groups. However, using

multiple t-test comparison is not appropriate

statistical practice. Because the chance of

committing a type I error (false positive, rejecting

the null hypothesis when it is true) is high

Weaver, Morales, Dunn, Godde and Weaver

(2017). Instead of using multiple t-test

comparison, Analysis of Variance (ANOVA) can

be used to compare the mean of multiple groups.

For example, the study Ashby, Sadera and

McNary (2011) used ANOVA to compare the

student success between developmental math

courses offered online, blended and face-to-face.

Since we have three different groups, ANOVA

will be used to compare the effect of the method

of learning programming on the students

understanding represented by the multiple-choice

post-test they will take. Weaver et al. (2017)

listed five assumptions that must be satisfied

before using ANOVA, which are:

 Abdelbaset Jamal Assaf 4386

1. Data type: “The dependent variable

must be interval or ratio.

Additionally, the independent

variable should have two or more

categorical groups”. This means that

the dependent variable must be

continuous, such as height measured

by cm or exam scores measured by

numbers. The independent variable

represents the independent groups

and normally ANOVA is used when

there are three or more categories or

groups, such as ethnicity or

treatment type. ANOVA can be used

for two groups but using t-test is

more common in this situation.

2. Distribution of data: “The data

follow a normal distribution. This

includes the dependent variable’s

distribution within each category

(group) of the independent variable”.

This means that a test for data

normality must be applied on the

dependent variable for each

independent variable level

separately. The one-way-ANOVA is

robust to violations of normality,

which means that this assumption

can be a little violated and still

provide valid results.

3. Independent samples: “The samples

are independent (with the exception

of rANOVA); independent samples

have no effect on one another”. It can

be also referred as independence of

observations, which means that there

must be different participants in each

group with no participant being in

more than one group. This

assumption is a matter of design, in

which using a between-subject

design will satisfy this assumption.

The between-subject design means

that different groups of people are

assigned to each group unlike the

with-in subject design were the same

group will do all the tasks.

4. Homogeneity: “The variance of the

populations must be equal, meaning

the populations must have an equal

spread around the mean”. This

means that the groups’ variances

must be homogeneous. This

assumption can be checked using

Levene’s test for homogeneity of

variances.

5. Random sampling:

“Theobservationsarerandomlysampl

edandareindependentfromoneanothe

r”. This means that each data point in

the population has an equal chance

of being included in the sample. The

independent samples part has been

described in point 3.

If all the previous assumption were met and

ANOVA was used. The result will only show if

there is a significant difference in the mean

between the tested groups or not. If the result

showed that there is a significant difference in the

mean. It will not determine which group is

statistically different from the other. In order to

specify where the differences lie, there is a need

to use post-hoc tests, such as Tukey honestly

significant test (HSD) Weaver et al. (2017).

5. Results and discussion

The experiment was conducted in universities in

Jordan as a case study of a developing country.

The experiment was conducted in Applied

Science University, Petra University and the

University of Jordan. The experiment aimed to

investigate the positive impact of using

simulation software and SGs for teaching

computer programming and to identify the best

approach of using this method in teaching to

increase the potential outcomes. Also, to

investigate the feasibility and possibility of using

SGs for teaching in developing countries.

 4387 Journal of Positive School Psychology

Meetings with the coordinators of the

programming courses for Year 1 students took a

place in three universities. Topics, such as how to

interact with students and how to announce the

competition were discussed. Permissions were

granted from the teachers of the programming

modules for year 1 students in all majors to make

a presentation in the lectures to introduce the

students to the competition. Interested students

who want to participate were asked to sign in a

consent form. 123 out of roughly 400 students

showed interest and signed in for the experiment,

in which 81 were males and 42 were females.

Following the framework, a pre-test has been

conducted to evaluate the students' programming

skills and knowledge and it was given to all

available year 1 students. 174 students completed

the pre-test to ensure we have a control group that

matches the two experimental groups.

Following the framework and as shown in Part 1

in figure 2. Students who signed for the

experiment were divided into two groups equally

based on their marks in the test to ensure that each

group has students on the same level. Then

students were informed, in which group they are

and the students in the first experimental group

who meant to work on their own were given

access to a website, where they can download the

software development kit they need to build their

own robots and to use it for submitting the final

work. Also, the students were given a document,

which acts as a short tutorial to help them start

with the game. The students in the second

experimental group who meant to take tutorials to

build their robots were informed of the times that

a computer laboratory was booked to start

developing the robots. The structure of the

tutorials is as follow:

1. Tutorial 1: The students were welcomed

and guided through the steps to

download the Robocode software

development kit and install in on the

machines. Then, the students were

shown how to start the game and how to

do simple and basic stuff, such as starting

a battle and creating new robots. The

students were asked to change the initial

code, which is automatically generated

when a new robot is created and see the

results of the changes by playing the

game. Some rules were explained to the

students, such as the rules of firing

bullets and the energy calculation,

information about the battlefield and its

coordination, the movement methods

and its parameters and the anatomy of the

robots, which consists of three main

parts, which are body, gun and radar.

2. Tutorial 2: Reaching the second tutorial,

the students were already familiar with

the basics of Robocode so they were

introduced to the events in the game and

how can the events be used and what data

can be retrieved from the occurrence of a

certain event. The students were

introduced to the getters, in which they

can retrieve information about other

robots in the battlefield, such as the

robot’s energy, distance and X and Y-

axis. The students were then asked to

start targeting the other robots by

calculating the distance between the two

robots and accordingly assign a suitable

firepower to the fired bullets.

3. Tutorial 3: In the third tutorial, the

students were asked to create their own

robot behavior and to draw a design.

After that, the students started

developing their robots based on the

created design. During the development,

the students were given assistance and

guidance to help them in completing the

objectives.

4. Tutorial 4: During the final tutorial, the

students continued the work on their

 Abdelbaset Jamal Assaf 4388

robot’s design and at the end of the

tutorial the students tried their robots

against each other to help them tune their

robots. Finally, the students submitted

their final work using the provided

website.

43 students (29 male and 14 female) from the two

experimental groups completed the tasks,

submitted their final work and completed the

post-test. Another 20 students (14 male and 7

female) who represent the control group

completed the post-test. The small number of

students who completed the experiment can be

justified by the timing of the experiment, in

which most of the students who drooped from the

experiment referred that to the timing of

experiment being at the end of the semester, in

which the students had many assignments and

assessments. However, the timing of the

experiment can’t be changed, because students

must cover different programming concepts

before getting involved in the experiment.

5.1. Results and discussion

ANOVA statistical test was chosen, and ANOVA

five assumptions must me be satisfied before

using ANOVA. The assumptions will be checked

and make sure they are all met as shown below:

1. Data type: The dependent variable data

must be interval or ratio. The dependent

variable data we have is interval, which

is represented by the exam scores.

2. Distribution of data: The data must be

tested to check if it is normally

distributed. Shapiro-Wilk test was

chosen as a test for data normality

because several studies stated that

Shapiro-Wilk test is the most powerful

normality test, such as Farrell and

Rogers-Stewart (2006); Keskin (2005).

In Shapiro-Wilk test, a null hypothesis

H0 means the population is normally

distributed and the alternative hypothesis

H1 means the population is not normally

distributed. If the significant value

obtained from the results is greater than

0.05 that means that the data came from

a normally distributed population and if

the significant value was less than 0.05

that means the null hypothesis is rejected

and the sample population is not

normally distributed. Table 6 shows the

results of applying Shapiro-Wilk test on

all three groups.

As shown in table 6, the significance value

for all three groups is greater than 0.05,

which means we accept the H0 that the data

came from a normally distributed

population.

Table 6 Shapiro-Wilk test results.

Normality test Shapiro-Wilk test

 Statistic value Significant (P-

value)

Control group 0. 969 0. 725

First experimental group 0. 979 0. 904

Second experimental group 0. 960 0. 552

Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 7, 4373-4401

3. Independent samples: The research

design followed the between-subject

design, in which different groups of

people are assigned to each group. Thus,

there are different participants in each

group, which means the samples are

independent.

4. Homogeneity: To check this assumption,

Levene’s test of homogeneity was used.

The original Levene’s test used only the

mean. Brown and Forsythe (1974)

extended the test to use the median or

10% trimmed mean. The 10% trimmed

mean is the mean of the observations

after removing the largest and smallest

10% values in that group. Levene’s test

null and alternative hypotheses are

defined as:

• H0: The data samples have equal

variances.

• H1: The data samples don’t have

equal variances.

Levene’s test was applied on the data using

the mean, median and 10% trimmed mean

to test the hypothesis that the groups’

variances are equal. Below are the results:

a) Use of mean: The p-value was

0.6686.

b) Use of median: The p-value was

0.7258.

c) Use of 10% trimmed mean: The

p-value was 0.6725.

All three tests failed to reject the null

hypothesis at the 0.05 significance level.

There is insufficient evidence to claim that

the variances are not equal and, thus, this

assumption for using ANOVA is satisfied.

5. Random sampling: The samples were

randomly selected and were randomly

assigned to the groups. The matching in

the groups was based on the marks but

the process of assigning the participants

to the groups was done randomly.

After all five assumptions were satisfied,

ANOVA will be applied on the results of the post-

test to test if there are any differences between the

three groups. Sullivan and Feinn (2012) defined

effect size as “the magnitude of the difference

between groups”. It helps readers understand the

magnitude of differences found. The p-value can

inform the reader whether an effect exists while

the effect size will reveal the size of the

intervention effect. For illustrative purposes,

effect sizes were calculated using the sample size,

mean and variance of the three groups. The

results showed the following:

1. The effect size for EG1 vs EG2 is

f=0.2288

2. The effect size for EG1 vs CG is

f=0.4343

3. The effect size for EG2 vs CG is

f=0.2178

4. The overall effect size is f=0.4343

Sullivan and Feinn (2012 defined statistical

power as "the probability that your study will find

a statistically significant difference between

interventions when an actual difference does

exist". If statistical power is high, the likelihood

of deciding there is an effect, when one does

exist, is high. The power was calculated using the

achieved overall effect size, which is 0.4343 and

with the significance level set to 0.05. The result

showed that the power is 0.8683 which means

that the significant results are reliable due to the

reduction in probability of type II error.

ANOVA is used to determine whether there are

any statistically significant differences between

the means of groups. ANOVA generates two

hypotheses, which are:

 Abdelbaset Jamal Assaf 4390

• H0: There are no statistically

significant differences between the

means of the groups.

• H1: There are statistically significant

differences between the means of the

groups.

Running ANOVA showed that the effect of

teaching approach on students results in the post-

test was significant, F (2, 61) = 6.01, p = 0.004.

This means we reject the null hypothesis H0 and

accept the alternative hypothesis H1. Table 7

shows the mean and standard deviation for all

three groups. Table 8 shows the generated table

from running ANOVA and figure 4 shows the

ANOVA boxplot.

Table 7: Groups mean and standard deviation.

 Experimental group 1 Experimental group 2 Control group

Mean 12.695 14.5 11

SD 3.308 3.12 3.245

Table 8: Result of running ANOVA

 Sum of squares Df Mean square F Sig.

Between groups 125.4898 2 62.7449 6.019 0.004

Within groups 635.8696 61 10.42409

Total 761.3594 63

Figure 4: ANOVA boxplot.

ANOVA test will only show that there is a

significant difference in the mean. It will not

determine which group is statistically different

from the other. In order to specify where the

 4391 Journal of Positive School Psychology

differences lie, there is a need to use post-hoc

tests, such as Tukey honestly significant test

(HSD) Weaver et al. (2017). HSD was used as a

post-hoc test to investigate where the differences

occurred between the three groups. HSD is

designed to compare each of the conditions

(groups) to every other condition (group). Thus,

it will compare EG1 with EG2, EG1 with CG and

EG2 with CG. HSD will run three times and each

time it generates two hypotheses, which are:

• H0: There are no statistically significant

differences between group 1 and group 2.

• H1: There are statistically significant

difference between group 1 and group 2.

Running HSD showed the following:

• EG2 and CG differed significantly at

p<.05, in which the p-value was 0.002.

Thus, H0 is rejected and the alternative

hypothesis H1 is accepted.

• EG2 and EG1 were not significantly

different, in which the p-value was 0.16

and, thus, the null hypothesis H0 is

accepted.

• EG1 and CG were not significantly

different, in which the p-value was 0.19

and, thus, the null hypothesis H0 is

accepted.

The statistical test ANOVA showed that there is

a statistically significant difference between the

three groups. When HSD was applied to

investigate further. The results showed that

students in the second experimental group, where

students used the SG and took the tutorials

(M=14.5, SD=3.12) achieved significantly higher

marks in the post-test compared to the control

group, where students didn't use the serious game

(M=11, SD=3.24). HSD didn't identify any

significant difference between the students in the

second experimental group and students in the

first experimental group (M=12.695, SD=3.308).

Also, the results showed that there is no

significant difference between the students in the

first experimental group and students in the

control group.

The statistical analysis shows that the test

results are significantly different for the three

groups. The significant difference occurred

between the control group and the group that used

the serious game through tutorials. The difference

between the other groups is big but not

significant. Considering the test results, which

represents students' understanding of the covered

concepts. It can be concluded that using SGs

through tutorials is the best approach for using

SGs in teaching computer programming.

Furthermore, conducting the experiment in

Jordan as a case study of a developing country

showed that using serious games for teaching in

developing countries is possible. The barriers

represented by the fragile computing

infrastructure and the lack of technology budget

didn't affect the possibility and feasibility of

using this approach in teaching. Conducting the

experiment in Jordan as a case study of a

developing country answered all the research

questions as follow:

1. Does the use of serious games affect

students’ understanding of computer

programming concepts?

The data analyses showed that using SGs

enhanced students’ understanding in computer

programming concepts.

2. What is the best approach for using

serious games in teaching computer

programming?

The data analyses showed that students’

marks after using the SG through tutorials

are significantly better than students’ marks

who didn’t use the SG. Thus, this study

concludes that using SGs through tutorials

is the best approach for using this method

in teaching.

 Abdelbaset Jamal Assaf 4392

3. Is it possible to use serious games for

teaching computer programming in

developing countries?

Conducting the experiment in Jordan as a

case study of a developing country showed

it is possible to use SGs for teaching in

developed countries as the requirements for

using this method of teaching are simple

and are easily accessed.

6. Conclusion

The use of SGs was suggested by many studies as

a solution for the difficulties in teaching

computer programming, which could help in

decreasing the attrition and failure rates.

Numerous studies have used SGs for teaching

computer programming. The results showed that

SGs enhanced students’ understanding of the

covered concepts and\or increased the students’

motivation. However, a gap was found since no

study compared the different approaches of using

SGs to increase the effectiveness of the used SG.

This study compared two different approaches

for using SGs in teaching, which are assignments

and tutorials. Also, the study conducted the

experiment in Jordan as a case study of a

developing country to investigate the possibility

and feasibility of using SGs in developing

countries.

A framework was designed by combining five

key factors for the success of using simulation

software and SGs. The factors are learning

environment, usage of space, students’ access,

staff contacts’ time and cost. The framework

consists of 2 experimental groups and 1 control

group. The first experimental group used a

serious game called Robocode to complete an

assignment and they had unlimited access to the

game. The second experimental group used the

same serious game through lectures to complete

the same assignment, but they had limited access

to the game. The control group didn't use the

serious game and they only attended the module

lectures and labs. After completing the

assignment, students in all groups completed a

test to measure their understanding of the covered

concepts. The results showed that using SGs

through lectures is significantly better than not

using SGs at all and it achieves better results in

terms of students’ understanding. Also, the study

found it is possible to use SGs for teaching in

developed countries.

Part of the future work is to conduct the same

experiment but using different SGs to check if the

same results will be achieved. Moreover, the

study recommends using the framework and

conducting the same experiment in other

countries, both developing and developed to see

if the same results can be obtained.

References

1. Abt, C., 1970. Serious Games. Lanham,

MD: University Press of America 1987.

doi:10.1177/000276427001400113.

2. Agalbato, F., Loiacono, D., 2018.

Robo3: a puzzle game to learn coding, in:

Proc. IEEE Games, Entertainment,

Media Conference (GEM)., pp. 359–

366. doi:10.1109/GEM.2018.8516515.

3. Al-Linjawi, A.A., Al-Nuaim, A.H.,

2010. Using alice to teach novice

programmers oop concepts. Journal of

King Abdulaziz University-Science 22,

59–68. doi:10.4197/sci.22-1.4.

4. AlAmmary, J., 2012. Educational

technology: A way to enhance students

achievement at the university of bahrain,

in: Procedia – Social and Behavioral

Sciences., pp. 48–257.

doi:10.1016/j.sbspro.2012.09.501.

5. Ali, A., 2009. Successful efforts in

recruiting women into technology

courses – a case study. Issues in

Information System , 225–231.

 4393 Journal of Positive School Psychology

6. All, A., Castellar, E.P., Looy, J., 2016.

Assessing the effectiveness of digital

game-based learning: Best practices.

Computers Education 92-93,

7. 90–103.

doi:10.1016/j.compedu.2015.10.007.

8. Alliger, G.M., Horowitz, H.M., 1989.

Ibm takes the guessing out of testing.

Training and Development Journal 43,

69–73.

9. Ashby, J., Sadera, W.A., McNary, S.W.,

2011. Comparing student success

between developmental math courses

offered online, blended, and face-to-face.

Journal of Interactive online Learning

10, 128–140.

10. Azad, A., Shubra, C., 2010. Efforts to

reverse the trend of enrollment decline in

computer science programs. Issues in

Informing Science and

11. Information Technology 7, 209–224.

doi:10.28945/1201.

12. Baker, A., Zhang, J., Caldwell, R.E.,

2012. Reinforcing array and loop

concepts through a game-like module, in:

The 17th International Conference on

Computer Games (CGAMES)., pp. 175–

179.

doi:10.1109/CGames.2012.6314572.

13. Barker, J.L., McDowell, C., Kalahar, K.,

2009. Exploring factors that influence

computer science introductory course

students to persist in the major. ACM

SIGCSE Bulletin 41, 153–157.

doi:10.1145/1539024.1508923.

14. Barnes, T., Richter, H., Powell, E.,

Chaffin, A., Godwin, A., 2007.

Game2learn: Building cs1 learning

games for retention, in: The 12th Annual

SIGCSE Conference on Innovation and

Technology in Computer Science

Education., pp. 121–125.

doi:10.1145/1268784.1268821.

15. Bayliss, J.D., 2007. The effects of games

in cs1-3. Journal of Game Development

3, 7–17.

16. Beaubouef, T., Mason, J., 2005. Why the

high attrition rate for computer science

students. ACM SIGCSE Bulletin 37,

103–106.

doi:10.1145/1083431.1083474.

17. Bennedsen, J., Caspersen, M.E., 2007.

Failure rates in introductory

programming. ACM SIGCSE Bulletin

39, 32–36. doi:10.1145/1272848.

1272879.

18. Bennedsen, J., Caspersen, M.E., 2019.

Failure rates in introductory

programming: 12 years later. ACM

Inroads 10, 30–36. URL: https:

//doi.org/10.1145/3324888,

doi:10.1145/3324888.

19. Benokraitis, V., Bizot, B., Brown, R.,

Martens, J., 2009. Reasons for cs decline:

Preliminary evidence. Journal of

Computing Sciences in Colleges 24,

161–162.

20. Bergin, S., Reilly, R., 2005. The

influence of motivation and comfort-

level on learning to program, in: The

17th Annual Workshop of the

Psychology of Programming Interest

Group., pp. 293–304.

21. Betancur, A.J., Rodríguez, C.,

Ezparragoza, I., 2011. An undergraduate

collaborative design experience among

institutions in the americas, in: The 8th

WSEAS International Conference on

Engineering Education., pp. 263–267.

22. Biju, S.M., 2012. Difficulties in

understanding object oriented

programming concepts. Lecture Notes in

Electrical Engineering Innovations and

Advances in Computer, Information,

Systems Sciences, and Engineering ,

319–326doi:10.1007/978-1-4614-3535-

 Abdelbaset Jamal Assaf 4394

8_27. Bonakdarian, E., L., W., 2004.

Robocode throughout the curriculum.

Journal of Computing Sciences in

Colleges 19, 311–313.

23. Bosse, Y., Gerosa, M.A., 2017. Why is

programming so difficult to learn?

patterns of difficulties related to

programming learning mid-stage.

24. SIGSOFT Softw. Eng. Notes 41, 1–6.

doi:10.1145/3011286.3011301.

25. Brown, M.B., Forsythe, A.B., 1974.

Robust tests for the equality of variances.

Journal of the American Statistical

Association 69, 364–367.

doi:10.2307/2285659.

26. Capece, G., Campisi, D., 2013. User

satisfaction affecting the acceptance of

an e-learning platform as a mean for the

development of the human capital.

Behaviour Information Technology 32,

335–343.

doi:10.1080/0144929x.2011.630417.

27. Cheah, C.S., 2019. Screencasting: how

effective is it in developing positive

attitude towards the learning of c++

computer programming. Journal of

Educational Sciences & Psychology 9.

28. Cheah, C.S., 2020. Factors contributing

to the difficulties in teaching and

learning of computer programming: A

literature review. Contemporary

Educational Technology 12.

doi:https://doi.org/10.30935/cedtech/82

47.

29. Chen, T.L., 2014. Exploring e-learning

effectiveness perceptions of local

government staff based on the diffusion

of innovations model. Administration

Society 46, 450–466.

doi:10.1177/0095399713482313.

30. Comber, O., Motschnig, R., Mayer, H.,

Haselberger, D., 2019. Engaging

students in computer science education

through game development with unity,

in: 2019 IEEE Global Engineering

Education Conference (EDUCON), pp.

199–205.

doi:10.1109/educon.2019.8725135.

31. Cooper, S., D.W., Pausch, R., 2000.

Alice: A 3-d tool for introductory

programming. Journal of Computing

Sciences in Colleges 15, 199–205.

32. Corney, M., Teague, D., Thomas, R.,

2010. Engaging students in

programming, in: The Twelfth

Australasian Conference on Computing

Education., pp. 63–72.

33. Corral, R.M.J., Balcells, C.A., Estévez,

M.A., Moreno, J.G., Ramos, F.J.M.,

2014. A game-based approach to the

teaching of object-oriented programming

languages. Computers Education, 83–92.

doi:10.1016/j.compedu.2013.12.013.

34. Dann, W., Cooper, S., Pausch, R., 2000.

Making the connection: Programming

with animated small world. ACM

SIGCSE Bulletin 32, 41–44.

doi:10.1145/353519.343070.

35. Daoudi, I., 2022. Learning analytics for

enhancing the usability of serious games

in formal education: A systematic

literature review and research agenda.

Education and Information

Technologies. doi:10.1007/s10639-022-

11087-4.

36. Dasuki, S., Quaye, A., 2016.

Undergraduate students’ failure in

programming courses in institutions of

higher education in developing

countries: A nigerian perspective. The

Electronic Journal of Information

Systems in Developing Countries 76, 1–

18. doi:10.1002/j.1681-4835.2016.

tb00559.x. E., D.J., J., D.D., 1984.

Microcomputer videogame based

training. Educational Technology 24,

11–17.

 4395 Journal of Positive School Psychology

37. Eagle, M., Barnes, T., 2008. Wu’s castle:

Teaching arrays and loops in a game.

ACM SIGCSE Bulletin 40, 245–249.

doi:10.1145/1597849. 1384337. Eagle,

M., Barnes, T., 2009. Experimental

evaluation of an educational game for

improved learning in introductory

computing. ACM SIGCSE Bulletin 41,

321–325.

doi:10.1145/1539024.1508980.

38. Erol, O., Kurt, A.A., 2017. The effects of

teaching programming with scratch on

pre-service information technology

teachers motivation and achievement.

Computers in Human Behavior 77, 11–

18. doi:10.1016/j.chb.2017.08.017.

39. Farid, S., Ahmad, R., Niaz, I.A., Arif,

M., Shamshirband, S., Khattak, M.D.,

2015. Identification and prioritization of

critical issues for the promotion of e-

learning in pakistan. Computers in

Human Behavior 51, 161–171.

doi:10.1016/j.chb.2015.04.037.

40. Farrell, P.J., Rogers-Stewart, K., 2006.

Comprehensive study of tests for

normality and symmetry: extending the

spiegelhalter test. Journal of Statistical

Computation and Simulation 76, 803–

816. doi:10.1080/10629360500109023.

41. Feigenspan, J., Kastner, C., Liebig, J.,

Apel, S., Hanenberg, S., 2012.

Measuring programming experience, in:

2012 20th IEEE International

Conference on Program Comprehension

(ICPC), p. 73–82.

doi:10.1109/icpc.2012.6240511.

42. Galgouranas, S., Xinogalos, S., 2018.

javant-garde: A cross-platform serious

game for an introduction to

programming with java. Simulation

Gaming 49, 751–767.

doi:10.1177/1046878118789976.

43. Gomes, A., Mendes, A.J.N., 2007.

Learning to program-difficulties and

solutions, in: The International

Conference on Engineering Education,

pp. 283–287.

44. Goosen, L., Pieterse, V., 2005. Goosen,

l. and pieterse, v., (2005, in: The 35th

conference of SACLA, pp. 283–287.

45. Green, S., Plant, N., Chan, C., 2016.

Student at risk identification and

remedial action system for improving

retention on computer science

programmes. New Directions in the

Teaching of Physical Sciences

doi:10.29311/ndtps.v0i11.572.

46. Gunasekaran, A., McNeil, R.D., Shaul,

D., 2002. E-learning: research and

applications. Industrial and Commercial

Training 34, 44–53. doi:10.

1108/00197850210417528.

47. Gálvez, J., Guzmán, E., Conejo, R.,

2009. A blended e-learning experience in

a course of object oriented programming

fundamentals. Knowledge-Based

Systems 22, 279–286.

doi:10.1016/j.knosys.2009.01.004.

48. Hainey, T., Connolly, T.M., Boyle, E.A.,

Wilson, A., Razak, A., 2016. A

systematic literature review of games-

based learning empirical evidence in

primary education. Computers &

Education 102, 202–223. URL:

https://www.sciencedirect.com/science/

article/pii/S0360131516301567,doi:http

s://doi.org/10.1016/j.compedu.2016.09.

001.

49. Hanks, B., Mcdowell, C., Draper, D.,

Krnjajic, M., 2004. Program quality with

pair programming in cs1. ACM SIGCSE

Bulletin 36, 176–180.

doi:10.1145/1026487.1008043.

50. Hanzu-Paraza, R., Barsan, E., 2010.

Teaching techniques –modern bridges

 Abdelbaset Jamal Assaf 4396

between lecturers and students, in: The

7th WSEAS International Conference on

Engineering Education, pp. 176–181.

51. Hartness, K., 2004. Robocode: Using

games to teach artificial intelligence.

Journal of Computing Sciences in

Colleges 36, 287–291.

52. Hillyard, C., Angotti, R., Panitz, M.,

Sung, K., Nordlinger, J., Goldstein, D.,

2010. Game-themed programming

assignments for faculty, in: The 41st

ACM technical symposium on Computer

science education - SIGCSE 10, pp. 270–

274. doi:10.1145/1734263.1734358.

53. Hwang, G.J., Wu, P.H., 2011.

Advancements and trends in digital

game-based learning research: a review

of publications in selected journals from

2001 to 2010. British Journal of

Educational Technology 43, 6–10.

doi:10.1111/j.1467-8535.2011.01242.x.

54. Jenkins, T., 2002. On the difficulty of

learning to program, in: The 3rd Annual

conference of the LTSN Centre for

Information and Computer Sciences, pp.

53–58.

55. Jordaan, D.B., 2018. Board games in the

computer science class to improve

students’ knowledge of the python

programming language, in: 2018

International Conference on Intelligent

and Innovative Computing Applications

(ICONIC).

doi:10.1109/iconic.2018.8601207.

56. Kasenides, N..P.N., 2021.

amazechallenge: An interactive

multiplayer game for learning to code,

in: 29TH INTERNATIONAL

CONFERENCE ON INFORMATION

SYSTEMS DEVELOPMENT.

57. Kelleher, C., Pausch, R., 2005. Lowering

the barriers to programming: A survey of

programming environments and

languages for novice programmers.

ACM Computing Surveys (CSUR) , 83–

137doi:10.1145/1089733.1089734.

58. Keskin, S., 2005. Comparison of several

univariate normality tests regarding type

i error rate and power of the test in

simulation based small samples. Journal

of Applied Science Research 2, 296–300.

59. Kinnunen, P., Malmi, L., 2006. Why

students drop out cs1 course?, in: The

2006 international workshop on

Computing education research – ICER

06, pp. 97–108.

doi:10.1145/1151588.1151604.

60. Kumar, R., 1996. Research

methodology: a step-by-step guide for

beginners. Sage.

61. Kunkle, W.M., Allen, R.B., 2016. The

impact of different teaching approaches

and languages on student learning of

introductory programming concepts.

ACM Transactions on Computing

Education 16, 1–26.

doi:10.1145/2785807.

62. Lamb, R.L., Annetta, L., Firestone, J.,

Etopio, E., 2018. A meta-analysis with

examination of moderators of student

cognition, affect, and learning outcomes

while using serious educational games,

serious games, and simulations.

Computers in Human Behavior 80, 158–

167.

doi:https://doi.org/10.1016/j.chb.2017.1

0.040.

63. Lee, Y.H., Hsieh, Y.C., Ma, C.Y., 2011.

A model of organizational employees’ e-

learning systems acceptance.

Knowledge-Based Systems 24, 355–366.

doi:10.1016/j.knosys.2010.09.005.

64. Liu, P.L., 2008. Using open-source

robocode as a java programming

assignment. ACM SIGCSE Bulletin 40,

63–67. doi:10.1145/1473195. 1473222.

65. Lopez, M., Whalley, J., Robbins, P.,

Lister, R., 2008. Relationships between

 4397 Journal of Positive School Psychology

reading, tracing and writing skills in

introductory programming, in: The

fourth international workshop on

Computing education research - ICER

08, pp. 101–112.

doi:10.1145/1404520.1404531.

66. Lu, J., Fletcher, G., 2009. Thinking about

computational thinking. ACM SIGCSE

Bulletin 41, 260–264.

doi:10.1145/1539024.1508959.

67. Andrew Luxton-Reilly, Becker, B., Ott,

L., Simon, Giannakos, M., Paterson, J.,

Albluwi, I., Kumar, A., Scott, M.,

Sheard, J., Szabo, C., 2018. Introductory

programming: a systematic literature

review, in: ITiCSE 2018 Companion -

Proceedings Companion of the 23rd

Annual ACM Conference on Innovation

and Technology in Computer Science

Education, Association for Computing

Machinery (ACM). pp. 55–106.

doi:10.1145/3293881.3295779.

68. MacLean, L., 2010. Recruitment and

retention of women in computer science

and information systems: How and why,

in: The 2nd International Conference on

Education and New Learning

Technologies, pp. 1585–1591.

69. Malliarakis, C., S.M., Xinogalos, S.,

2014. Cmx: Implementing an mmorpg

for learning programming, in: The

European Conference on Gamesbased

Learning, pp. 346–355.

70. Malliarakis, C., S.M., Xinogalos, S.,

2017. Cmx: The effects of an educational

mmorpg on learning and teaching

computer programming, in: IEEE

Transactions on Learning Technologies,

pp. 219–235.

71. Malliarakis, C., S.O., Mozelius, P., 2015.

How to build an ineffective serious

game: Worst practices in serious game

design, in: The 9th European Conference

on Games Based Learning, ECGBL.

72. Manaris, B., 2007. Dropping cs

enrollments: Or the emperor’s new

clothes? ACM SIGCSE Bulletin 39, 6–

10. doi:10.1145/1345375.1345377.

73. Marin-Garcia, J.A., Mauri, J.L., 2007.

Teamwork with university engineering

students. group process assessment tool,

in: The 3rd WSEAS/IASME

International Conference on Educational

Technologies, p. 391–396.

74. Mathrani, A., C.S., Ponder-Sutton, A.,

2016. Dropping cs enrollments: Or the

emperor’s new clothes? Educational

Technology Society 19, 5–17.

75. Mcdowell, C., Werner, L., Bullock, H.E.,

Fernald, J., 2006. Pair programming

improves student retention, confidence,

and program quality. Communications of

the ACM 49, 90–95.

doi:10.1145/1145287.1145293.

76. Michael, D., Chen, S., 2005. How

college affects students: A third decade

of research. John Wiley Sons, Inc.

77. Michael, D., Chen, S., 2006. Serious

Games: That Educate, Train, and Info.

Thomson Course Technology.

78. Miljanovic, M.A., Bradbury, J.S., 2017.

Robobug: A serious game for learning

debugging techniques, in: The 2017

ACM Conference on International

Computing Education Research - ICER

17. doi:10.1145/3105726.3106173.

79. Navimipour, N.J., Zareie, B., 2015. A

model for assessing the impact of e-

learning systems on employees’

satisfaction. Computers in Human

Behavior 53, 475–485.

doi:10.1016/j.chb.2015.07.026.

80. Olipas, C., 2022. A phenomenological

study on the feelings, challenges, and

difficulties experienced by information

 Abdelbaset Jamal Assaf 4398

technology students in learning

computer programming. Path of Science

8, 2001–2006. doi:10.22178/pos.83-3.

81. Omar, N.D., Hassan, H., Atan, H., 2012.

Student engagement in online learning:

Learners attitude toward e-mentoring, in:

Procedia - Social and Behavioral

Sciences, p. 464–475.

doi:10.1016/j.sbspro.2012.11.351.

82. Ouahbi, I., Kaddari, F., Darhmaoui, H.,

Elachqar, A., Lahmine, S., 2015.

Learning basic programming concepts

by creating games with scratch

programming environment. Procedia -

Social and Behavioral Sciences 191,

1479–1482.

doi:10.1016/j.sbspro.2015.04.224.

83. Papadopoulos, Y., Tegos, S., 2012.

Using microworlds to introduce

programming to novices, in: The 16th

Panhellenic Conference on Informatics.

doi:10.1109/pci.2012.18.

84. Phuong, D. D., H.F.T.H., Shimakawa,

H., 2008. Collaborative learning

environment with convincing opinions

for novice programmers, in: The 5th

WSEAS/IASME International

Conference on Engineering Education,

pp. 88–94. doi:10.1109/pci.2012.18.

85. Piwek, P., Savage, S., 2020. Challenges

with learning to program and problem

solve: An analysis of student online

discussions, in: Proceedings of the 51st

ACM Technical Symposium on

Computer Science Education,

Association for Computing Machinery,

New York, NY, USA. p. 494–499. URL:

https://doi.org/10.1145/3328778.336683

8, doi:10.1145/3328778.3366838.

86. Porter, L., Guzdial, M., Mcdowell, C.,

Simon, B., 2013. Success in introductory

programming: What works?

Communications of the ACM 56, 34–36.

doi:10.1145/2492007.2492020.

87. Porter, L., Lee, C., Simon, B., Guzdial,

M., 2017. Preparing tomorrows faculty

to address challenges in teaching

computer science. Communications of

the ACM 60, 25–27.

doi:10.1145/3068791.

88. Qian, Y., Lehman, J., 2017. Students’

misconceptions and other difficulties in

introductory programming: A literature

review. ACM Trans. Comput. Educ. 18.

URL: https://doi.org/10.1145/3077618,

doi:10.1145/3077618.

89. Queirós, R., Pinto, M., Terroso, T., 2020.

Computer Programming Education in

Portuguese Universities, in: Queirós, R.,

Portela, F., Pinto, M., Simões, A. (Eds.),

First International Computer

Programming Education Conference

(ICPEC 2020), Schloss Dagstuhl–

Leibniz-Zentrum für Informatik,

Dagstuhl, Germany. pp. 21:1–21:11.

URL:

https://drops.dagstuhl.de/opus/volltexte/

2020/12308,

doi:10.4230/OASIcs.ICPEC.2020.21.

90. Ragonis, N., Ben-Ari, M., 2005. A long-

term investigation of the comprehension

of oop concepts by novices. Computer

Science Education 15, 203–221.

doi:10.1080/08993400500224310.

91. Rajeev, S., Sharma, S., 2018.

Educational game-theme based

instructional module for teaching

introductory programming, in: IECON

2018 - 44th Annual Conference of the

IEEE Industrial Electronics Society.

doi:10.1109/iecon.2018.8592835.

92. Ramabu, T.J., Sanders, I., Schoeman,

M., 2021. Teaching and learning cs1

with an assist of manipulatives, in: 2021

IST-Africa Conference (IST-Africa), pp.

1–8.

93. Roberts, J., Styron, R., 2011. Student

satisfaction and persistence: Factors vital

 4399 Journal of Positive School Psychology

to student retention. Research in Higher

Education Journal 6, 1–18.

94. Robins, A., Rountree, J., Rountree, N.,

2003. Learning and teaching

programming: A review and discussion.

Computer Science Education 13, 137–

172. doi:10.1076/csed.13.2.137.14200.

95. Rosenberg, J., Kölling, M., 1997.

Testing object-oriented programs:

Making it simple. ACM SIGCSE

Bulletin 29, 77–81. doi:10.1145/268085.

268115.

96. Ross, M.J., 2002. Guiding students

through programming puzzles: Value

and examples of java game assignments.

ACM SIGCSE Bulletin 34, 94–98.

doi:10.1145/820127.820175.

97. Rozali, N.F., Zaid, N.M., 2017. Code

puzzle: Actionscript 2.0 learning

application based on problem based

learning approach, in: 2017 6th ICT

International Student Project Conference

(ICT-ISPC). doi:10.1109/ict-

ispc.2017.8075329.

98. Rubin, B., Fernandes, R., Avgerinou,

M.D., 2013. The effects of technology on

the community of inquiry and

satisfaction with online courses. The

Internet and Higher Education 17, 48–

57. doi:10.1016/j.iheduc.2012.09.006.

99. Savage, S., Piwek, P., 2019. Full report

on challenges with learning to program

and problem solve: an analysis of first

year undergraduate open university

distance learning students’ online

discussions.

100. Seyal, A.H., Mey, Y.S.,

Matusin, M.H., Siau, H.N.H., Rahman,

A.A., 2015. Understanding students

learning style and their performance in

computer programming course:

Evidence from bruneian technical

institution of higher learning.

International Journal of Computer

Theory and Engineering 7, 241–247.

doi:10.7763/ijcte.2015.v7.964.

101. Simon, Luxton-Reilly, A.,

Ajanovski, V.V., Fouh, E., Gonsalvez,

C., Leinonen, J., Parkinson, J., Poole, M.,

Thota, N., 2019. Passrates in

introductory programming and in other

stem disciplines, Association for

Computing Machinery, New York, NY,

USA. URL:

https://doi.org/10.1145/3344429.337250

2, doi:10.1145/3344429.3372502.

102. Singh, K.Y., 2006. Fundamental

of research methodology and statistics.

New Age International.

103. Sithole, A., Chiyaka, E.T.,

McCarthy, P., Mupinga, D.M., Bucklein,

B.K., Kibirige, J.S., 2017. Student

attraction, persistence and retention in

stem programs: Successes and

continuing challenges. Higher Education

Studies 7, 46–59.

104. Sloan, R.H., Troy, P., 2008. Cs

0.5: A better approach to introductory

computer science for majors. ACM

SIGCSE Bulletin 40, 271–275.

doi:10.1145/1352322.1352230.

105. Smith, P., 2013. Serious Games

101. New Age International.

106. Sprint, G., Cook, D., 2015.

Enhancing the cs1 student experience

with gamification, in: 2015 IEEE

Integrated STEM Education Conference.

doi:10.1109/isecon.2015.7119953.

107. Sullivan, G.M., Feinn, R., 2012.

Using effect size—or why thepvalue is

not enough. Journal of Graduate Medical

Education 4, 279–282.

doi:10.4300/jgme-d-12-00156.1.

108. Sun, P.C., Tsai, R.J., Finger, G.,

Chen, Y.Y., Yeh, D., 2008. What drives

a successful e-learning? an empirical

 Abdelbaset Jamal Assaf 4400

investigation of the critical factors

influencing learner satisfaction.

Computers Education 50, 1183–1202.

doi:10.1016/j.compedu.2006.11.007.

109. Swamidurai, R., Kannan, U.,

2016. A preliminary report on improving

student motivation and persistence in

computer programming courses with

software inspection, in: ASEE Gulf-

Southwest Annual Conference, TCU.

doi:10.18260/1-2-620-38953.

110. Talebian, S., Mohammadi,

H.M., Rezvanfar, A., 2014. Information

and communication technology (ict) in

higher education: Advantages,

disadvantages, conveniences and

limitations of applying e-learning to

agricultural students in iran. Procedia -

Social and Behavioral Sciences 152,

300–305.

doi:10.1016/j.sbspro.2014.09.199.

111. Talton, J.O., Peterson, D.L.,

Kamin, S., Israel, D., Al-Muhtadi, J.,

2006. Scavenger hunt: Computer science

retention through orientation. ACM

SIGCSE Bulletin 38, 443–447.

doi:10.1145/1124706.1121478.

112. Teo, T., 2014. Preservice

teachers’ satisfaction with e-learning.

Social Behavior and Personality: An

International Journal 42, 3–6.

doi:10.2224/ sbp.2014.42.1.3. Tobias,

S., Fletcher, J.D., 2007. What research

has to say about designing computer

games for learning. Educational

Technology 47, 20–29.

113. Topalli, D., Cagiltay, N.E.,

2018. Improving programming skills in

engineering education through problem-

based game projects with scratch.

Computers Education 120, 64–74.

doi:10.1016/j.compedu.2018.01.011.

114. Triplett, D., 2002. An interview

with robocode creator mat nelson.

Developer Works, IBM’s Resource for

Developers.

115. Tîrziu, M.A., Vrabie, C., 2015.

Education 2.0: E-learning methods.

Procedia - Social and Behavioral

Sciences 186, 376–380. doi:10.1016/j.

sbspro.2015.04.213. United-Nations,

2018. World Economic Situation and

Prospects. United Nations.

116. Vogel, J.,

V.D.S.C.B.J.B.C.A.M.K., Wright, M.,

2006. Computer gaming and interactive

simulations for learning: A meta-

analysis. Journal of Educational

Computing Research 34, 229–243.

117. Wang, T.H., 2014. Developing

an assessment-centered e-learning

system for improving student learning

effectiveness. Computers Education 73,

189–203.

doi:10.1016/j.compedu.2013.12.002.

118. Watson, C., Li, F.W., 2014.

Failure rates in introductory

programming revisited, in: The 2014

conference on Innovation technology in

computer science education - ITiCSE 14,

pp. 39–44.

doi:10.1145/2591708.2591749.

119. Watson, S., Lipford, H.R., 2019.

Motivating students beyond course

requirements with a serious game, in:

Tthe 50th ACM Technical Symposium

on Computer Science Education -

SIGCSE 19, pp. 211–217.

doi:10.1145/3287324.3287364.

120. Weaver, K.F., Morales, V.C.,

Dunn, S.L., Godde, K., Weaver, P.F.,

2017. An Introduction to Statistical

Analysis in Research: With Applications

in the Biological and Life Sciences. John

Wiley Sons, Inc.

121. Wilson, B.C., 2002. A study of

factors promoting success in computer

science including gender differences.

 4401 Journal of Positive School Psychology

Computer Science Education 12, 141–

164. doi:10.1076/csed.12.1.141.8211.

122. Wolz, U., Barnes, T., Parberry,

I., Wick, M., 2006. Digital gaming as a

vehicle for learning. ACM SIGCSE

Bulletin 38, 394–395.

doi:10.1145/1124706.1121463.

Woodfield, R., 2014. Undergraduate

retention and attainment across the

disciplines. York: Higher Education

Academy.

123. Xu, D., Huang, W.W., Wang,

H., Heales, J., 2014. Enhancing e-

learning effectiveness using an

intelligent agent-supported personalized

virtual learning environment: An

empirical investigation. Information

Management 51, 430–440.

doi:10.1016/j.im.2014.02.009.

124. Yan, L., 2009. Teaching object-

oriented programming with games, in:

2009 Sixth International Conference on

Information Technology: New

Generations. doi:10.1109/itng.2009.13.

125. Zareie, B., Navimipour, J.N.,

2016. The effect of electronic learning

systems on the employee’s commitment.

International Journal of Management

Education 14, 167–175.

doi:10.1016/j.ijme.2016.04.003.

126. Zhang, J., Caldwell, E.R., Smith,

E., 2013a. Learning the concept of java

inheritance in a game, in: The 18th

International Conference on Computer

Games (CGAMES), pp. 212–216.

doi:10.1109/cgames.2013.6632635.

127. Zhang, X., Zhang, C., Stafford,

T., Zhang, P., 2013b. Teaching

introductory programming to is students:

The impact of teaching approaches on

learning performance. Journal of

Information Systems Education 24, 147–

155.

128. Zhao, D., Chis, A., Muntean,

G.M., Muntean, C.H., 2018. A large-

scale pilot study on game-based learning

and blended learning methodologies in

undergraduate programming courses, in:

The 10th International Conference on

Education and New Learning

Technologies. doi:10.21125/

edulearn.2018.0948.

129. Zhao, D., Muntean, C.H., Chis,

A.E., Muntean, G.M., 2021. Learner

attitude, educational background, and

gender influence on knowledge gain in a

serious games-enhanced programming

course. IEEE Transactions on Education

64, 308–316.

doi:10.1109/TE.2020.3044174.

130. Zhao, D., M.C.H., Muntean, G.,

2019. The restaurant game: a newton

project serious game for c programming

courses, in: The Society for Information

Technology Teacher Education

International Conference, pp. 2121–

2128.

131. Zweben, S., 2008. 2006-2007

taulbee survey. Computing Research

News 3.

132. Zweben, S., 2009. 2007-2008

taulbee survey: Upward trend in

undergraduate cs enrollment; doctoral

production continues at peak levels.

Computing Research News.

133. Zweben, S., 2010. 2008-2009

taulbee survey undergraduate cs

enrollment continues rising; doctoral

production drops. Computing Research

News.

134. Zweben, S., Bizot, B., 2017.

2017 cra taulbee survey another year of

record undergrad enrollment; doctoral

degree production steady while master’s

production rises again. Computing

Research Association.

